Photochemical experiments. The reactions were carried out under nitrogen using a HPK 125W mercury lamp (*Philips*) and a G. W. V. glass filter (transmission limit: 370 nm). In the runs moni tored by NMR, the reactions were carried out in NMR, tubes (100 mg/0.5 ml). For preparative runs a standard irradiation set-up was used (1 g/100 ml). After about 8 h no starting material was left For the isolation of **6** and **7** (mixture) the residue from **1a** of such a preparative run was chromatographed on a preparative thin-layer plate (silicagel, benzene/ethyl acctate 4:1). As both **6** and **7** slowly decompose in solution the ratios of isolated **6**/**7** from C_6H_6 or t-BuOH were not fully reproducible, varying between 1:2 and 1:1 (yield: 10-25%).

REFERENCES

- [1] K. Schaffner, Advanc. Photochem. 4, 81 (1966).
- [2] P. J. Kropp, in 'Organic Photochemistry' part 1 (O. Chapman editor) chapter 1, Marce Dekker Inc., New York 1967.
- [3] D. I. Schuster, Pure and Appl. Chemistry, 41, 601 (1975).
- [4] D. I. Schuster & K. V. Prabhu, J. Amer. chem. Soc. 96, 3511 (1974).
- [5] D. I. Schuster, G. C. Barile & K. Liu, J. Amer. chem. Soc. 97, 4441 (1975).
- [6] D. G. Hewitt & R. F. Taylor, Chem. Commun. 1972, 493.
- [7] A. Nilsson, A. Ronlan & V. Parker, Tetrahedron Letters 1975, 1107.
- [8] P. Margaretha & P. Tissot, Helv. 58, 933 (1975).
- [9] J. Heller, A. Dreiding, B. R. O'Connor, H. E. Simmons, G. L. Buchanan, R. A. Raphael & R. Taylor Helv. 56, 272 (1973).
- [10] G. L. Buchanan, R. A. Raphael & R. Taylor, J. chem. Soc. Perkin I 1973, 373.
- [11] J. S. Swenton, E. Sauerborn, R. Srinivasan & F. I. Sonntag, J. Amer. chem. Soc. 90, 2990 (1968).
- [12] H. E. Zimmerman, R. W. Binkley, J. J. McCullough & G. A. Zimmerman, J. Amer. chem. Soc. 89, 6589 (1967).
- [13] C. H. DePuy, C. E. Lyons & L. B. Rodewald, J. Chem. & Eng. Data 11, 102 (1966).
- [14] T. Matsuura, Bull. Soc. chem. Japan 37, 564 (1964).
- [15] E. R. Altwicker & C. D. Cook, J. Org. chemistry 29, 3087 (1964).
- [16] G. Bozzato, H. P. Throndsen, K. Schaffner & O. Jeger, J. Amer. chem. Soc. 86, 2073 (1964).

70. 3-Alkyl-1-benzoxepin-5-on-Derivate und 2-Alkyl-1,4-naphthochinone aus 2-Acylaryl-propargyläthern

von Martha Jackson-Mülly1), Janos Zsindely und Hans Schmid

Organisch-chemisches Institut der Universität Zürich, Rämistrasse 76, 8001 Zürich

Herrn Prof. H. H. Inhoffen, Braunschweig, zum 70. Geburtstag gewidmet

(29. XII. 75)

3-Alkyl-1-benzoxepin-5-one derivatives and 2-alkyl-1,4-naphtoquinones from 2acylaryl propargyl ethers. – Summary. It was found that 3-alkyl-1-benzoxepin-5(2H)-ones of type B can be synthesized by treating 2-acylaryl propargyl ethers of type A with sodium methylsulfinyl methide (NaMSM, dimesyl sodium) (Scheme 13). Oxepinone derivatives of type B undergo ring contraction with base (also NaMSM) to yield the quinol derivatives C which, oxidize (during work-up), if $\mathbb{R}^2 = \mathbb{H}$, to the 1,4-naphthoquinones D (Scheme 13).

The propargyl ethers used are listed in *Scheme 1*. The naphthalene derivatives 1 and 3 give oxepinones (*E*-9 and a mixture of 14/15 respectively), whereas the expected oxepinone from 2 is transformed directly into the quinone 11 (*Scheme 2, 3* and 5). Isomerizations of 2-acetylphenyl

¹⁾ Auszug aus der Dissertation von M. Mülly, Universität Zürich 1975.

propargyl ethers (4, 5 and 6) (Schemes 6, 7 and 8) are less successful because of side reactions. If however the acetyl group is replaced by a propionyl or substituted propionyl group (as in ethers 7 and 8) oxepinones are obtained again in good yield (Scheme 9).

The mechanistic pathway for the transformation of naphthyl propargyl ethers (and phenyl derivatives) under influence of NaMSM is shown in *Scheme 10*. The base-catalysed conversion of 4-phenyl-1-benzoxepin-5(2H)-one, benzo[f]furo[2, 3-c](10H)-oxepin-4-ones and 3-methoxy-6, 11-dihydro-dibenzo[b, e]oxepin-11-one into the corresponding quinones has been reported [13][20][21].

The conversion of 2-acylaryl propargyl ethers *via* the isolable benzoxepin-5-one derivatives or directly into the specifically substituted 1,4-naphthoquinone derivatives is of synthetic interest.

1. Einleitung. – Die bisher bekannten Methoden zur Synthese von 1-Benzoxepin-5-on-Derivaten lassen sich in zwei Gruppen einteilen: Ringschluss geeignet substituierter Benzolderivate wie Phenoxybuttersäuren [1] und 2-Acetylphenoxyessigsäuren [2] sowie Ringerweiterungsreaktionen ausgehend von 1-Chroman-4-on-Derivaten [3] oder 3-Pyrrolidino-benzofuran [4].

Im folgenden wird eine neue Synthese von 3-alkylierten 1-Benzoxepin-5-on-Abkömmlingen ausgehend von 2-Acylaryl-propargyläthern beschrieben. Ferner wird über die Umwandlung von 1-Benzoxepin-5-onen in 2-Alkylnaphthalin-1,4-dione (2-Alkyl-1,4-naphthochinone) berichtet.

2. Synthese der 2-Acylaryl-propargyläther. – Die verwendeten Äther sind in Schema 1 dargestellt; sie wurden durch Umsatz der entsprechenden 2-Acylphenole bzw. 1-Acetyl-2-naphthol mit Propargylbromid, But-2-in-3-yl-p-toluolsulfonat oder 1-Methylpropargyl-p-toluolsulfonat in siedendem Aceton in Gegenwart von Kaliumcarbonat hergestellt. Die Ausbeuten betrugen 60-80%. Die durchwegs kristallinen Äther wurden duch Analysen und Spektren charakterisiert (vgl. exper. Teil).

Schema 1

1

2

6

E C	$ \begin{array}{c} R^{3} \\ R^{2} \\ R^{1} \\ R^{1} \end{array} $	Η(δ)	Η(β)	Η(α)	Η(γ)	CH ₃ (β)
E-9	$\begin{array}{l} R^1 = R^2 = H \\ R^3 = C H_3 \end{array}$	8,61; $d \times m$ 8,57 ^b) 8,89 ^c) J(d) = 8,5	5,58; $q \times qi$ 5,49 b) 4,33 c) J(q) = 7 J(qi) = 1,5	4,70; qi 4,59 ^b) 4,33 ^c) J == 1,5	3,70; qi 3,57 ^b) 3,43 ^c) $\int = 1$	$1,66; d \times 1,64^{\text{b}} \\ 1,27^{\text{c}} \\ J(d) = 2 \\ J(qi) = 2 \\ J(q$
Z-9	$\begin{array}{l} \mathrm{R}^{1} = \mathrm{R}^{3} = \mathrm{H} \\ \mathrm{R}^{2} = \mathrm{C}\mathrm{H}_{3} \end{array}$	8,81 ^b); br. d 9,15 ^c) J(d) = 9	5,49 ^b); m 5,10 ^c)	4,72 ^b); br. s 4,43 ^c)	3,57 ^b); br. s 3,43 ^c)	1,55 ^b); á 1,17 ^c)
14	$\begin{array}{l} R^2 = R^3 = H \\ R^1 = CH_3 \end{array}$	8,73; $d \text{ mit FS}$ J(d) = 9	5,03 je br. s	4,67; br. $q = 6$	$3,76^{d}$ 3,42 je <i>AB-d</i> f(gem) = 16	1,57°); b J = 6

Tabelle 1. Wichtige NMR.-Signale^w) der 2,3-Dihydro-naphth[2,1-b]oxepin-1(4H)-one E-9, Z-9 und

3,4-Dihydro-1-benzoxepin-5(2H)-one 18, 31 und 34

+		Η(δ)	Η(β)	Η(α)	$H(\gamma)$	andere
18	R = H	7,77; d mit FS J = 9	5,00 4,87 je s mit FS	4,61; s mit FS	3,57; s mit FS	
31	$\mathbf{R} = \mathbf{CH}_{3}$	7,79; $d \times d$ J(d) = 8 J(d) = 2	4,96; s mit FS	$ 4,81 \\ 4,55 \\ J (gem) = 13 $	3,79; q mit FS J = 7	$CH_3(\gamma)$ 1,36; d J = 7
34	$R = CH_2C_6H_5$	7,77; $d \times d$ J(d) = 7 J(d) = 2	4,96; <i>s</i> mit FS	$ \begin{array}{l} 4,72 \\ 4,52 \\ J(gem) = 15 \end{array} $	4,00; br. <i>t</i> <i>J</i> == 7	$\begin{array}{l} {\rm CH}_2(\gamma) \\ {\rm 3,39}; \ A B \\ J \ (gem) = \\ J \ (d) = 7 \\ 2,99; \ A B \\ J \ (gem) = \\ J \ (d) = 8 \end{array}$

a) NMR.-Spektren bei 100 oder 60 MHz in Tetrachlorkohlenstoff, chemische Verschiebungen (δ in ppm) zu TMS als internem Standard = 0, s = Singulett, d = Dublett, t = Triplett, q = Quartett, qi = Qum = Multiplett, FS = Feinstruktur, br. = breit. Kopplungskonstanten in Hz.

b) Spektrum des Gemisches E/Z-9.

c) Spektrum des Gemisches E/Z-9 in C₆D₆.

d) Verbreitert.

 $^{e)}\quad CH_{3}\ an\ C(4)\ (\alpha).$

3. Umsetzung der 2-Acylaryl-propargyläther mit Natrium-methylsulfinylmethid in Dimethylsulfoxid. – In der Regel wurden die Äther durch Zugabe zu einer 3×10^{-3} M Lösung von Natrium-methylsulfinylmethid (NaMSM) in Dimethylsulfoxid (DMSO) unter Argon bei Raumtemperatur umgesetzt. Das molare Verhältnis von Reagens und Äther war stets 1. Das dunkel gefärbte Gemisch hielt man je nach dem eingestzten Äther 5 Min. bis 3 Std. bei Raumtemperatur. Anschliessend wurde auf Eis gegossen und mit Pentan ausgeschüttelt. Die Reinigung der Produkte erfolgte durch präp. Schichtchromatographie und Hochvakuumdestillation bzw. Umkristallisation.

3.1. (1-Acetylnaphth-2-yl)-but-2'-inyläther (1) gab nach 1,5-2stdg. Reaktionsdauer 48-52% (3(1')-E)-Äthyliden-2,3-dihydro-naphth[2,1-b]oxepin-1(4H)-on (E-9) neben ca. 20% 1-Acetyl-2-naphthol und 2% 2-Äthyl-phenanthren-1,4-dion (10) (Schema 2). Der Anteil an Z-9 (vgl. nachstehend) betrug aufgrund der gas-chromatographischen Analyse weniger als 1%.

Die Konstitution von E-9 folgt vor allem aus dem NMR.-Spektrum (Tab. 1). Die wichtigen Signale und ihre Beziehungen sind in dieser Tabelle aufgeführt. Die E-Konfiguration der C(3)-C(1')-Doppelbindung ergibt sich durch ein NOE-Experiment: Einstrahlung in die Absorption der Methylenprotonen an C(4) (bzw. α) führt zu einer Intensitätssteigerung (8%) des Signals des vinylischen Protons an C(1') (bzw. R²). Von Interesse ist die Resonanzstelle von H an C(11) (bzw. δ) (d mit Feinaufspaltung, J = 8,5 Hz) bei 8,61 ppm. Im Spektrum des Äthers 1 lässt sich die Resonanzstelle des entsprechenden peri-H an C(8) nicht genau festlegen; sie muss zwischen 7,6 und 7,8 ppm liegen²). Auf der anderen Seite absorbiert das *peri*-H in den planaren Chinonen 10 und 11 sowie im Chinol 16 (Schemata 2, 3 und 5, Tab.2) zwischen 9,55 und 9,58 ppm. Die Resonanzstelle des *peri*-ständigen H in E-9 liegt etwa in der Mitte zwischen diesen Werten. Der siebengliedrige Oxepinon-Ring muss im Hinblick auf die Äquivalenz der Methylenprotonen an C(2) und C(4) sehr flexibel sein, was bewirkt, dass die Ketogruppe im Mittel immer noch einen deutlichen Entschirmungseffekt auf das *peri*-H ausübt und in gewisser Konjugation mit dem Naphthalinsystem steht. Dies zeigt sich auch in der infraroten ν (CO)-Frequenz, die mit 1680 cm⁻¹ um 20 cm⁻¹ nach kleineren Wellenzahlen verschoben ist als die des Ausgangsäthers 1. 2, 3-Dihydro-1H-naphtho[2,1-b]pyran-1-one zeigen im IR.-Spektrum (CCl₄) die CO-Bande bei 1670 [6] bis 1675 cm⁻¹ [7]³); das peri-ständige H an C(10) absorbiert im NMR.-Spek-

²) Im NMR.-Spektrum von β -Chlorallyl-(1-isopropenyl-naphth-2-yl)-äther, in dem die Isopropenylgruppe praktisch vollständig aus dem Ring herausgedreht ist (UV.-Evidenz), absorbiert das *peri*-H bei 7,78 ppm [5].

³) Vgl. ν (CO) von Acetophenon = 1694 cm⁻¹, ν (CO) von 2, 4, 6-Trimethylacetophenon = 1708 cm⁻¹ [8].

trum bei 9,3 ppm (d₆-DMSO) [9]. Das UV.-Spektrum von E-9 ist durch eine breite mit Schultern versehene Bande bei 306 nm gekennzeichnet; es unterscheidet sich deutlich von dem des Äthers 1 und dem des 2,3-Dihydro-1*H*-naphtho[2,1-*b*]pyran-1ons [7], was auf eine Mittelstellung des Oxepinons E-9 zwischen dem offenen und dem cyclischen Äther hinweist (vgl. exper. Teil). Im Massenspektrum von E-9 ist neben dem Molekularionenpik m/e 238 (100%) vor allem das Fragmention m/e 171 (80%) wichtig, dem die nachstehende Formel zugeordnet werden kann. Dasselbe Fragmention (C₁₁H₇O₂) tritt auch intensiv im Massenspektrum des Äthers 1 auf.

E-9 liess sich bei Raumtemperatur durch Isomerisierung im Zweiphasensystem Pentan/wässerige Natronlauge mit Benzyltriäthylammoniumbromid als Phasen-transferkatalysator in das Gleichgewichtsgemisch von 85% *E*- und 15% *Z*-9 überführen ($\Delta G_{25^\circ} = -1 \text{ kcal/mol}$).

Das NMR.-Spektrum des Gemisches E/Z-9 in C₆D₆ ist in Tab.1 angegeben. Man erkennt, dass H(δ) im Z-Isomeren um 0,26 ppm bei tieferem Feld absorbiert als in *E*-9. Die Methylgruppe an C(β) absorbiert im Z-Isomeren um 0,1 ppm bei höherem Feld als im *E*-Isomeren. Das Konformerengleichgewicht von *E*- und Z-9 ist demnach etwas verschieden.

E-9 konnte durch Behandlung mit NaMSM in 85proz. Ausbeute in 2-Athylphenanthren-1,4-dion (10) übergeführt werden. Dessen Konstitution ergibt sich aus dem Vergleich seiner spektroskopischen Daten (UV., IR.) mit denjenigen der Methyl-

	÷ ,			
	R Η(δ)	Η(γ)	$CH_2 R(\beta)$	andere
11 R = H	9,55; $d \times d$ J(d) = 9 J(d) = 3	6,78; q J = 2	2,17; d J = 2	-
$10 \ R = CH_3$	9,58; $d \times d$ J(d) = 8 J(d) = 2	6,74; t J = 2	2,63; $d \times q$ J(d) = 2 J(q) = 7	$CH_{3}CH_{2}(\beta)$ 1,25; t J = 7
н Оснз ССН3 ОН	9,56; br. d 3 $J = 9$	5,89; q J = 1,5	2,04; d J = 1,5	CH ₃ an C(1) 1,56; s
16				

Tabelle 2. Wichtige NMR.-Signale^a) der 2-Alkyl-phenynthren-1, 4-dione11 und10 und von4-Hydroxy-3, 4-dimethyl-phenanthren-1(4H)-on(16)

Vgl. Tab. 1 Fussnote a).

verbindung 11 (siehe 3.2.). Das NMR.-Spektrum von 10 ist in Tab.2 angegeben. Im Massenspektrum ist der M⁺-Pik Basispik⁴). 10 konnte auch im «Eintopfverfahren» direkt aus dem Äther 1 nach *ca.* 2,5 Std. in 49,5proz. Ausbeute erhalten werden; *E-9* wurde als Zwischenprodukt durch Dünnschicht- und Gas-Chromatographie (DC./GC.) nachgewiesen.

3.2. (1-Acetylnaphth-2-yl)-propargyläther (2) gab nach einer Reaktionsdauer von ca. 7 Min. mit NaMSM in 75proz. Ausbeute das bekannte [11] 2-Methyl-phenanthren-1,4-dion (11) (Schema 3). Dieses Produkt wurde von uns bereits früher beschrieben [12]. Zum Vergleich ist das NMR.-Spektrum von 11 in Tab.2 aufgeführt. Zwischenprodukte wurden bei der Überführung von 2 in 11 nicht gefunden. Als Nebenprodukt (2-4%) trat das Epoxid von 11, nämlich die Verbindung 12 auf (Schema 3). Für dieses Produkt sind im IR.-Spektrum die Epoxid-Banden, die Lage der Ketonbande bei 1690 cm⁻¹ sowie im NMR.-Spektrum (Tab.4) das Signal des Epoxidprotons bei 3,98 ppm charakteristisch; die langwellige UV.-Absorption des Chinons fehlt (vgl. exper. Teil).

Schema 4

4) Dieses Chinon sowie die andern in dieser Arbeit beschriebenen zeigen keinen $(M^+ + 2)$ -Pik [10].

Da die Reaktion mit NaMSM unter Argonatmosphäre ausgeführt wurde, ist es wahrscheinlich, dass – wenigstens teilweise – das Epoxid auf dem in *Schema 4* gezeigten Weg entstanden ist. Bei einem Kontrollversuch mit 2-Methyl-1,4-naphthochinon (**21**) wurde unter Umlagerungsbedingungen ebenfalls die Bildung des entsprechenden Epoxids (in 20proz. Ausbeute) beobachtet (vgl. 3.4. und exper. Teil)⁵).

3.3. (1-Acetylnaphth-2-yl)-2'-but-3'-inyl-äther (3) gab nach Umsetzungsdauern von 7–130 Min. mit NaMSM ein Gemisch von 4-Methyl-3-methyliden-2,3-dihydro-naphth-[2,1-b]oxepin-1-on (14), 3,4-Dimethyl-naphth[2,1-b]oxepin-1(4H)-on (15), 3,4-Dimethyl-4-hydroxy-phenanthren-1(4H)-on (16) und 3,4-Dimethyl-naphth[2,1-b]oxepin-1-(2H)-on (17) in einer Gesamtausbeute von ca. 80% (Schema 5). Die Anteile der einzelnen Produkte variierten stark von Versuch zu Versuch (vgl. exper. Teil).

4-Methyl-3-methyliden-2, 3-dihydro-naphth[2, 1-b]oxepin-1-on (14) zeigt sehr ähnliche UV.-, IR.- und Massenspektren wie E-9. Die Tendenz der Methylgruppe an C(4) (α), eine pseudoäquatoriale Lage einzunehmen, erhöht die Koplanarität der CO-Gruppe zum Naphthalinsystem: im Vergleich zu E-9 absorbiert H an C(11) (δ) von 14 um 0,12 ppm bei tieferem Feld (vgl. Tab. 1).

3,4-Dimethyl-naphth[2,1-b]oxepin-1(4H)-on (15) wurde als gelbliches Öl erhalten. Sein UV.-Spektrum ist im Charakter sehr ähnlich demjenigen von 14, nur sind die Extremwerte nach längeren Wellen verschoben, was auf eine konjugierte Lage der C,C-Doppelbindung hinweist. Die Carbonylgruppe absorbiert im Vergleich zur Keton-

gruppe in 14 um 25 cm⁻¹ bei kleineren Wellenzahlen; diese Absorption sowie diejenige der Doppelbindung stimmen gut mit den entsprechenden IR.-Absorptionen von 4-Phenyl-1-benzoxepin-5(2*H*)-on überein [13] (vgl. exper. Teil). Im Massenspektrum von 15 – im Gegensatz zum Verhalten von 14 – gibt das Molekularion den Basispik; dies gilt auch für die analogen, in dieser Arbeit beschriebenen 1-Benzoxepin-5(2*H*)one. Wie man auch aus Molekularmodellen erkennt, ist der Oxepinon-Ring flexibel (im NMR.-Spektrum (vgl. Tab. 3): s für H₂ an C(4) (α) in den zu 15 analogen 1-Benzoxepin-5(2*H*)-onen); die Carbonylgruppe steht im Vergleich zu 14 mehr aus der

⁵) Epoxidierungen mit DMSO scheinen in der Literatur noch nicht beschrieben worden zu sein; sie sollen noch näher untersucht werden.

		Η(δ)	Η(γ)	Η(α)	CH ₃ (β)	andere
	CH3 B CH3 B CH3 B	8,39; br. d J = 9	6,12; q $J = 2$	4,70; br. <i>q</i> <i>J</i> = 7	1,92; d J = 2	$CH_3(\alpha)$ 1,41; d J = 7
15						
R^3 R^2	$ \begin{array}{c} R^2 & O \\ H \\ H \\ H \\ O \\ \pi \end{array} $					
19	$\begin{array}{l} \mathrm{R}^1 = \mathrm{R}^2 = \\ \mathrm{R}^3 = \mathrm{H} \end{array}$	7,86; $d \times d$ J(d) = 8 J(d) = 2	6,17; br. s	4,54; s	2,00; br. s	
23	$\begin{array}{l} \mathrm{R}^{1} = \mathrm{R}^{3} = \mathrm{H} \\ \mathrm{R}^{2} = \mathrm{OCH}_{3} \end{array}$	-	5,93; q J = 2	4,43; s	1,84; br. s	OCH ₃ 3,74; s
27	$R^1 = R^2 = H$ $R^3 = C1$	7,92; d	6,30; br. s	4,6 2; <i>s</i>	2,06; br. s	-
32	$R^{2} = R^{3} = H$ $R^{1} = CH_{3}$	J = 3 7,85; $d \times d$ J(d) = 9 J(d) = 2	_	4,53; s	2,00; s	CH3(γ) 1,87; s
35	$\begin{array}{l} \mathrm{R}^2 = \mathrm{R}^3 = \mathrm{H} \\ \mathrm{R}^1 = \mathrm{CH}_2 \varnothing \end{array}$	7,88; $d \times d$ J(d) = 8 J(d) = 2	-	4,58; <i>s</i>	2,04; s	CH ₂ (γ) 3,76; s

Tabelle 3. Wichtige NMR.-Signale^a) von 3, 4-Dimethyl-naphth[2,1-b]oxepin-1(4H)-on (15) und der 3-Methyl-1-
benzoxepin-5(2H)-one 19, 23, 27, 32 und 35

a) Vgl. Tab. 1, Fussnote a).

Ebene des aromatischen Ringes heraus. Als Folge davon absorbiert das *peri*-ständige H an C(11) (δ) bei relativ hohem Feld ($\Delta (\delta(14) - \delta(15)) = 0.34$ ppm).

4-Hydroxy-3,4-dimethyl-phenanthren-1(4H)-on (16) besitzt ein ähnliches UV.-Spektrum wie 15, nur ist die längerwellige Absorption etwas ausgeprägter. Die ν (CO)- und die ν (CC)-Frequenzen im IR.-Spektrum liegen ähnlich wie diejenigen von 15. Das NMR.-Spektrum ist mit der Struktur in Einklang (vgl. Tab.2). Erwartungsgemäss ist im Massenspektrum der (M^+ -CH₃)-Pik der intensivste.

3,4-Dimethyl-naphth[2,1-b]oxepin-1(2H)-on (17) zeigt ähnliche UV.-Absorptionen wie 2,3-Dihydro-1H-naphtho[2,1-b]pyran-1-on [7] sowie im IR.-Spektrum eine Ketobande bei 1690 cm⁻¹; die Carbonylgruppe von 14 absorbiert praktisch im gleichen Bereich. Aus Molekularmodellen erkennt man, dass die Molekel in einer umklappbaren (im NMR.-Spektrum s für H₂ an C(2) (vgl. exper. Teil)), dachartigen Konformation («First» = Verbindungsachse O(5)–C(2)) vorliegt, die die Carbonylgruppe in praktisch planare Einstellung zum aromatischen System bringt. Entsprechend gross ist die chemische Verschiebung für H an C(11); im übrigen bestätigt das NMR.-Spektrum die vorgeschlagene Struktur (vgl. exper. Teil).

3.4. 2-Acetylphenyl-propargyläther (4) gab nach einer Reaktionsdauer von ca. 10 Min. 10–15% 3-Methyliden-3,4-dihydro-1-benzoxepin-5-on (18) und 30–35% eines Gemisches aus 3-Methyl-1-benzoxepin-5(2 H)-on (19) und dessen Epoxid 3-Methyl-3,4epoxy-3,4-dihydro-1-benzoxepin-5-on (20) im Verhältnis 85:15. Aus einem weiteren Ansatz wurden nach ca. 15 Min. Reaktionsdauer bereits Folgeprodukte von 19, nämlich ca. 3% 2-Methyl-1,4-naphthochinon (21) und ca. 35% von dessen Epoxid (22) isoliert (Schemata 6 und 4, vgl. 3.2.).

Die Konstitution der empfindlichen Substanz 18 ergibt sich durch Vergleich ihres NMR.-Spektrums mit denjenigen der bereits bekannten methylsubstituierten Naphthoxepinone *E-9* und 14 (vgl. Tab.1). An die Stelle des *peri*-H an C(11) (δ) in der Naphthylreihe tritt in den Benzoxepin-5-onen das Proton an C(6) (δ), das durch den Einfluss der C(5)-Ketogruppe eine weniger ausgeprägte, aber dennoch deutliche Verschiebung nach tieferem Feld erfährt (vgl. Tab.1).

3-Methyl-1-benzoxepin-5(2*H*)-on (19) konnte durch präp. GC. unter grossen Verlusten in einer Reinheit von 98,5% erhalten werden. Seine Konstitution lässt sich vor allem aus dem NMR.-Spektrum (vgl Tab.3) ableiten; die Stelle des *ortho*-Protons an C(6) (δ) bei 7,86 ppm stimmt gut mit derjenigen (8,05–7,85 ppm) des entsprechenden Protons in 4-Phenyl-1-benzoxepin-5(2*H*)-on [13] überein. Die IR.-Banden bei 1665 und 1640 cm⁻¹ sind ebenfalls mit den in der Literatur angegebenen Werten in Einklang [13].

3-Methyl-3, 4-epoxy-3, 4-dihydro-1-benzoxepin-5-on (20) konnte nicht von 19 abgetrennt werden. Für die angenommene Struktur spricht neben dem M^+ -Pik bei m/e 190 im Massenspektrum vor allem der Vergleich des NMR.-Spektrums (vgl. Tab. 4) mit demjenigen von 19: das Signal des *ortho*-Protons an C(6) bei 7,68 ppm ist um 0,18 ppm nach höherem Feld verschoben, was auf eine gestörte Koplanarität zwischen der Carbonylgruppe und dem Benzolsystem hinweist. Die beiden Singulette bei 3,44 (1 H) und 1,53 (3 H) ppm können dem Epoxid-Proton an C(4) und der Methylgruppe an C(2) zugeordnet werden; entsprechende Signale treten im NMR.-Spektrum von 12 (vgl. 3.2. und Tab.4) auf.

		$H(\delta)$	$H(\gamma)$	Η(α)	$CH_3(\beta)$
R					
20	$\mathbf{R} = \mathbf{H}$	7,68; $d \times d$ J(d) = 8 J(d) = 2	3,44; s	4,26; s	1,53; s
28	R = Cl	7,75; $d J = 3$	3,65; s	4,35; s	1,56; s
R² R³	H' O H CH3				
12	$R^{1}/R^{2} =$ benzo $R^{3} = H$	8,95-8.80; m ^b)	3,98; s	-	1,78; <i>s</i>
22	$ \begin{array}{l} \mathrm{R}^1 = \mathrm{R}^2 = \\ \mathrm{R}^3 = \mathrm{H} \end{array} $		3,75; s	-	1, 67 ; s
25	$\begin{array}{l} \mathrm{R}^1 = \mathrm{R}^3 = \\ \mathrm{OCH}_3 \\ \mathrm{R}^2 = \mathrm{H} \end{array}$	-	3,62; s	-	1,63; s
30	$ \begin{aligned} \mathbf{R^1} &= \mathbf{R^3} \coloneqq \mathbf{H} \\ \mathbf{R^2} &= \mathbf{Cl} \end{aligned} $	7,92; d J = 8	3,82; s	-	1,69; s

Tabelle 4. Wichtige NMR.-Signale²) der Epoxy-Verbindungen 20, 28, 12, 22, 25 und 30

g1

b) peri-H an C(11).

25

Ö

2-Methyl-1,4-naphthochinon (21) wurde durch Vergleich mit authentischem Material identifiziert.

2-Methyl-2,3-epoxy-1,4-naphthochinon (22) wurde als farblose Kristalle vom Smp. 95–98° (Lit.: Smp. 94–95° [14], 95–97° [15]) erhalten. Das UV.-Spektrum ist mit dem in der Literatur angegebenen identisch [14]. Wichtige NMR.-Signale sind in Tab.4 angegeben; sie sind im Einklang mit der vorgeschlagenen Struktur.

3.5. (2-Acetyl-3,5-dimethoxy-phenyl)-propargyläther (5) gab nach Reaktionsdauern von 40–100 Min. neben ca. 30% Edukt ca. 15% 6,8-Dimethoxy-3-methyl-1-benzoxepin-5(2H)-on (23) oder dessen Folgeprodukt 5,7-Dimethoxy-2-methyl-1,4-naphthochinon (24) und 10–20% eines Gemisches aus 60% des Epoxids 25 und 40% einer nicht identifizierten Verbindung. Bei Überschuss an NaMSM konnte anstelle von 23 oder 24 ca. 15% 3-Hydroxy-5,7-dimethoxy-2-methyl-1,4-naphthochinon (26) isoliert werden (Schema 7).

6,8-Dimethoxy-3-methyl-1-benzoxepin-5(2H)-on (23) ist das Analogon der bereits beschriebenen Verbindung 19 (NMR.-Spektrum vgl. Tab.3). Infolge der sterisch anspruchsvollen Methoxygruppe an C(6) ist die Konjugation zwischen der α,β -ungesättigten Ketogruppe und dem Benzolkern erschwert, so dass trotz des Effekts der Methoxygruppen die UV.-Absorption von 23 gegenüber derjenigen von 19 nach kürzeren Wellenlängen verschöben ist. Aus demselben Grund liegt die Carbonylbande im IR.-Spektrum von 23 um 5 cm⁻¹ höher (bei 1670 cm⁻¹) als diejenige von 19.

5,7-Dimethoxy-2-methyl-1,4-naphthochinon (24) konnte aufgrund des Schmelzpunktes und des UV.-Spektrums [16] als bereits bekannte Verbindung identifiziert werden. Die alternative Struktur mit der Methylgruppe in 3-Stellung kann deshalb – wie im Falle von 11 – ausgeschlossen werden.

Die Konstitution der Verbindung 25 ergibt sich wiederum durch Vergleich der spektralen Daten mit denjenigen der Verbindung 12. Das NMR.-Spektrum ist in Tab.4 angegeben.

Die basenlösliche Verbindung **26** ist isomer mit dem Epoxid **25**, zeigt jedoch im NMR.-Spektrum statt eines Epoxid-Proton-Signals ein breites *s* bei *ca*. 3,5 ppm, das durch Zugabe von Deuteriumoxid verschwindet. Im IR.-Spektrum beobachtet man eine breite Bande bei 3450 cm⁻¹, die auf eine intramolekulare Wasserstoffbrücke hin-weist; die Carbonylbande ist gegenüber derjenigen von **24** um 10 cm⁻¹ nach kleineren Wellenzahlen verschoben. **26** stellt daher 3-Hydroxy-5,7-dimethoxy-2-methyl-1,4-naphthochinon dar; die alternative Struktur mit der Hydroxylgruppe an C(2) und der Methylgruppe an C(3) ist aufgrund der gesicherten Struktur des Chinons **24** ausgeschlossen.

3.6. (2-A cetyl-4-chlor-phenyl)-propargyläther (6) gab mit NaMSM nach einer Reaktionsdauer von 12–20 Min. ein Gemisch aus 7-Chlor-3-methyl-1-benzoxepin-5(2H)-on (27) und dessen Epoxid 28 resp. den Folgeprodukten 6-Chlor-2-methyl-1, 4-naphthochinon (29) und dessen Epoxid 30 (Schema 8). Die Gesamtausbeute betrug 20%.

7-Chlor-3-methyl-1-benzoxepin-5(2*H*)-on (**27**) zeigt das erwartete NMR.-Spektrum (vgl. Tab.3); die Stellung des Chloratoms ergibt sich aus der Multiplizität (*d*) und der Kopplungskonstante (J = 3 Hz) des Signals für H an C(6).

7-Chlor-3-methyl-3,4-epoxy-3,4-dihydro-1-benzoxepin-5-on (28) ist das Analogon der chlorfreien Verbindung 20; wichtige NMR.-Signale sind in Tab.4 angegeben.

6-Chlor-2-methyl-1,4-naphthochinon (29) konnte im Gemisch mit 30 anhand des NMR.-Spektrums (vgl. exper. Teil) identifiziert werden.

6-Chlor-2-methyl-2, 3-epoxy-1, 4-naphthochinon (30) zeigt sehr ähnliche UV.- und IR.-Spektren wie 22; das NMR.-Spektrum ist in Tab. 4 angegeben und steht mit der Struktur in Einklang.

3.7. (2-Propionyl-phenyl)-propargyläther (7) gab nach einer Reaktionsdauer von 5-7 Min. mit NaMSM 3% 4-Methyl-3-methyliden-3,4-dihydro-1-benzoxepin-5-on (31) und 70-75% eines nicht auftrennbaren Gemisches von 3,4-Dimethyl-1-benzoxepin-5 (2H)-on (32) und 2,3-Dimethyl-1,4-naphthochinon (33) im Verhältnis 97:3 (GC.) (Schema 9).

4-Methyl-3-methyliden-3,4-dihydro-1-benzoxepin-5-on (31) ist ein relativ beständiges farbloses Öl; sein NMR.-Spektrum ist in Tab. 1 angegeben; es steht mit der angegebenen Struktur in Einklang. Die Methylgruppe an C(4) (γ) beeinflusst das Konformationsgleichgewicht des Tetrahydro-Oxepinon-Rings, so dass die Ketogruppe im Vergleich zu derjenigen von 14 bzw. E-9 um 5 bzw. 10 cm⁻¹ bei höheren Wellenzahlen (1690 cm⁻¹) absorbiert. Im Massenspektrum von **31** tritt der zum Fragmention m/e 171 (vgl. 3.1.) analoge Pik bei m/e 121 (80%) auf.

3,4-Dimethyl-1-benzoxepin-5(2*H*)-on (**32**) zeigt im Vergleich zur analogen Verbindung **19** und zu 2,3-Dimethyl-1,4-naphthochinon (**33**) eine um 15 cm⁻¹ nach kleineren Wellenzahlen verschobene Ketonabsorption im IR.-Spektrum. Das UV.-Spektrum ist im Charakter ähnlich wie dasjenige von **19**, nur sind die Extremwerte um *ca*. 10 nm nach längeren Wellen verschoben, was auf die zusätzliche Methylgruppe an C(4) zurückgeführt werden kann. Das NMR.-Spektrum (vgl. Tab.3) steht mit der Formel **32** in Einklang.

2, 3-Dimethyl-1, 4-naphthochinon (33) wurde im Gemisch mit 32 durch Vergleich mit authentischem Material identifiziert (GC.).

3.8. 2-Dihydrocinnamoylphenyl-propargyläther (8) gab mit NaMSM nach einer Reaktionsdauer von 5–7 Min 8% 4-Benzyl-3-methyliden-3, 4-dihydro-1-benzoxepin-5(2H)on (34) und 80% 4-Benzyl-3-methyl-1-benzoxepin-5(2H)-on (35); bei relativ längerer Reaktionsdauer (ca. 15 Min.) wurde ausschliesslich 2-Benzyl-3-methyl-1, 4-naphthochinon (36) erhalten (Schema 9).

Die beiden Verbindungen **34** und **35** liessen sich durch Vergleich der spektralen Daten mit denjenigen der Benzoxepin-5(2H)-one **31** und **32** identifizieren; die NMR.-Spektren sind in Tab.1 (**31/34**) und Tab.3 (**32/35**) angegeben.

2-Benzyl-3-methyl-1,4-naphthochinon (**36**) wurde als gelb gefärbte Kristalle vom Smp. 106,0–107,3° (Lit.: Smp. 106–108° [17]) erhalten und anhand seiner spektralen Daten identifiziert.

4. Diskussion. – (1-Acetyl-naphth-2-yl)-propargyläther (2) lässt sich mit Natrium-methylsulfinylmethid (NaMSM) in 75proz. Ausbeute in 2-Methyl-phenanthren-1,4-dion (11) überführen [12]. Beim Umsatz analoger, zusätzlich methylsubstituierter Äther (1, 3) konnten Zwischenprodukte dieser Umwandlung isoliert werden, so dass sich der in *Schema 10* angegebene Bildungsmechanismus postulieren lässt.

Intramolekularer Angriff der Enolat-Gruppierung in **a** auf die Dreifachbindung (vgl. [18] [19]) liefert die Vinylanionen **b**, die unter Protonenaufnahme in Tetrahydrooxepinon-Derivate **c** übergehen. Diese werden durch Deprotonierung in resonanzstabilisierte Dihydro-oxepinon-Anionen **d** übergeführt, die via **e** in mesomere Dihydrooxepinon-Anionen **f** umgewandelt werden. Ringverengung von **f** via **g** führt zu den Chinolanionen **h**, die durch Dehydrierung (falls $\mathbb{R}^1 = \mathbb{H}$) mit Luftsauerstoff die Chinone **10** und **11** oder (falls $\mathbb{R}^1 = \mathbb{CH}_3$) die Chinole **16** liefern. Beispiele für die Umwandlung vom Typus **f** \rightarrow Chinone sind bereits bekannt [13] [20] [21], hingegen wurde hier erstmals die postulierte Chinolzwischenstufe durch Blockierung des Oxydationsschrittes abgefangen.

Für die Gültigkeit des Schemas 10 spricht das Auftreten der Zwischenprodukte *E-9*, 14 und 15. Beim Umsatz des Äthers 1 konnte neben ca. 2% 10 in ca. 50proz. Ausbeute ausschliesslich das kinetisch kontrollierte⁶), *E*-konfigurierte 2,3-Dihydronaphth[2,1-b]oxepin-1(4*H*)-on-Derivat *E-9* isoliert werden, das nach relativ langer Reaktionsdauer praktisch quantitativ in 10 übergeht. Dies bedeutet, dass **b** durch

⁶⁾ E-9 lässt sich, wie früher erwähnt, mit Base in das Gleichgewichtsgemisch aus 85% E- und 15% Z-9 überführen.

eine intramolekulare E-Addition (*trans*-Addition) an die C,C-Dreifachbindung aus **a** entstanden sein muss. Die Cyclisierung von der Allenylzwischenstufe **i** aus kann ausgeschlossen werden, da in diesem Fall bei kinetischer Kontrolle aufgrund der sterischen Hinderung des Angriffes an das mittlere C-Atom der Allenylgruppe hauptsächlich Z-9 resultieren müsste.

Es bleibt die Frage, warum nur E-9, jedoch nicht \mathbf{c} (mit $\mathbb{R}^1 = \mathbb{R}^2 = \mathbf{H}$) isolierbai ist. Aufgrund von Modellbetrachtungen erkennt man, dass die Ablösung eines Protons in α -Stellung zur Carbonylgruppe in \mathbf{c} leichter erfolgen sollte als in E-9, wo die Methylgruppe einen Angriff der Base auf die α -Protonen aus sterischen Gründen erschwert. Ist jedoch das Anion von E-9 einmal gebildet, so könnte die Protonierung – die Protonenquelle wäre DMSO – aus sterischen Gründen an C(1') langsamer erfolgen als an C(2). Eine Art Hyperresonanz der E-ständigen Methylgruppe in E-9, wie sie in Schema 11 zum Ausdruck gebracht ist, könnte zudem eine stärkere Erhöhung der Dichte der negativen Ladung an C(2) relativ zum Anion von \mathbf{c} bewirken. Dies würde bedeuten, dass bei der kinetisch kontrollierten Protonierung von 1b das Keton E-9 gebildet wird. Im Falle des korrespondierenden Anions von \mathbf{c} treten die beiden Effekte nicht auf, so dass die kinetisch kontrollierte Protonierung direkt zu \mathbf{e} führen könnte.

Die oben erwähnte Hyperresonanzstabilisierung wurde von *Epiolis et al.* [22] für die grössere Stabilität z.B. von Z-Propenyl-methyläther gegenüber der entsprechenden *E*-Verbindung ($\Delta \Delta G_{25^{\circ}} = -0.53$ kcal/mol) [23] (vgl. *Schema 11*) verantwortlich gemacht.

Die Zwischenstufen vom Typ **e** (*Schema 10*) können (ausser im Falle $\mathbb{R}^1 \neq H$, siehe später) nicht gefasst werden: Deprotonierung führt zu den resonanzstabilisierten Anionen **f**, die rasch und irreversibel *via* **g** und **h** zu den Produkten abgeführt werden.

Beim Umsatz des Äthers 3 konnten sämtliche möglichen Zwischenprodukte (14, 15 und 17) in unterschiedlichen Ausbeuten isoliert werden. Wie Modellbetrachtungen zeigen, erschwert die C(4)-Methylgruppe aus sterischen Gründen die Ringverengung von \mathbf{f} ($\mathbf{R}^1 = \mathbf{CH}_3$) aus. Dies hat zur Folge, dass \mathbf{f} nur langsam via \mathbf{g} zu \mathbf{h} abreagiert

und sich statt dessen ein Gleichgewicht zwischen **d** und **f** einstellen kann. Kinetische Protonierung der mesomeren Anionen **d** und **f** liefert dann die Verbindungen 14 und 15 bzw. 15 und 17. Durch gas-chromatographische Verfolgung der Isomerisierungsreaktion von 3 liess sich zeigen, dass zunächst 14, dann 15 gebildet wird. 17 entstand erst, nachdem alles Ausgangsmaterial 3 verschwunden war und zwar vor allem auf Kosten von 14. Das Auftreten von 17 (einer weitgehend spannungsfreien Molekel) könnte auf der Tendenz des Anions **f** beruhen, in ein Produkt mit einer möglichst hochsubstituierten Doppelbindung überzugehen; 15 erweist sich aufgrund von Molekularmodellen als recht gespannt und besitzt nur eine trisubstituierte Doppelbindung. 17 liess sich in einem Kontrollversuch durch Behandlung mit NaMSM nicht in **f** bzw. dessen Folgeprodukte überführen, sondern polymerisierte sich. 14 und 15 konnten dagegen im Kontrollversuch in 16 umgewandelt werden; bei der Umsetzung von 15 wurde *via* **d** auch das praktisch spannungsfreie 14 erhalten (vgl. exper. Teil).

Diese Versuche schliessen einen Bildungsweg für **17** via **i** und **k** mit grosser Wahrscheinlichkeit aus. Die Bildung eines Allenylderivates bei der basenkatalysierten Isomerisierung der Acylaryl-propargyläther wurde nie beobachtet. Hingegen wurde (1-Methyl-naphth-2-yl)-propargyläther, der kein Enolat bilden kann, in langsamer Reaktion mit NaMSM in den Allenyläther übergeführt.

Der in Schema 10 angegebene Reaktionsmechanismus gilt auch für die Umwandlung der 2-Acylphenyl-propargyläther 4 bis 8 (Schema 12). In drei Fällen liessen sich hier die primär zu erwartenden 3-Methyliden-3,4-dihydro-1-benzoxepin-5-one, nämlich 18, 31 und 34, nachweisen. Im Gegensatz zu den Vertretern der Naphthalin-Reihe konnten durch Verkürzung der Reaktionsdauer (von ca. 10 auf 5 Min.) aus den Phenyläthern die 3-Methyl-1-benzoxepin-5(2H)-one 19, 23, 27, 32 und 35 gewonnen

Schema 12

4 R¹ = R² = R³ = H
5 R¹ = R³ = H, R² = OCH₃
6 R¹ = R² = H, R³ = Cl
7 R¹ = CH₃, R² = R³ = H

8 $R^1 = CH_2 \emptyset, R^2 = R^3 = H$

18 $R^1 = R^2 = R^3 = H$

31 $R^1 = CH_3, R^2 = R^3 = H$

34 $R^1 = CH_2 \emptyset$, $R^2 = R^3 = H$

19 $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H}$ **23** $\mathbb{R}^{1} = \mathbb{R}^{3} = \mathbb{H}$, $\mathbb{R}^{2} = \mathbb{OCH}_{3}$ **27** $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{H}$, $\mathbb{R}^{3} = \mathbb{Cl}$ **32** $\mathbb{R}^{1} = \mathbb{CH}_{3}$, $\mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H}$ **35** $\mathbb{R}^{1} = \mathbb{CH}_{2}\emptyset$, $\mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H}$

21 $R^1 = R^2 = R^3 = H$ **24** $R^1 = R^3 = H, R^2 = OCH_3$ **29** $R^1 = R^2 = H, R^3 = Cl$ **33** $R^1 = CH_3, R^2 = R^3 = H$ **36** $R^1 = CH_2\emptyset, R^2 = R^3 = H$

werden. Ihre Umwandlung in die entsprechenden 2-Methyl-1,4-naphthochinone 21, 24, 29, 33 und 36 verläuft wesentlich langsamer als die der entsprechenden Naphthoxepinone, da die Ringverengung (entsprechend dem Übergang $\mathbf{f} \rightarrow \mathbf{g}$ in Schema 10) mit der Aufhebung der aromatischen Resonanz verbunden ist; im Falle der Naphthoxepinone wird dabei nur ein Ring des Naphthalinsystems betroffen⁷). Die relativ langsame Umwandlung der 3-Methyl-1-benzoxepin-5(2H)-one in die Naphthochinone dürfte für das konkurrierende Auftreten von höher molekularen Produkten aus des ersteren verantwortlich sein.

Wesentlich stabiler sind die δ -Benzoxepinone 32 und 35 (mit einem Substituenten in Stellung 4), zu deren Gewinnung von Propiophenon-Derivaten ausgegangen wird. Bei kurzer Reaktionsdauer mit NaMSM erhält man 32/35 in 70–85proz. Ausbeute, bei längerer Reaktionsdauer die Chinone 33/36 in *ca.* 80% Ausbeute.

Die vorangehend beschriebenen Versuche haben somit die Möglichkeit eröffnet, 2-Acylaryl-propargyläther des Typs **A** mit NaMSM in einem einzigen Reaktionsschritt in 15-80proz. Ausbeute in 3-Alkyl-1-benzoxepin-5(2*H*)-one vom Typus **B** überzuführen (*Schema 13*). Vermutlich soll ein Substituent in ortho-Stellung zur Acylgruppe nicht zu gross sein. Besonders leicht verläuft die Reaktion dann, wenn $\mathbb{R}^4 \neq H$ ist. Bei $\mathbb{R}^1 = \mathbb{C}l$ können Materialverluste durch konkurrierende Arinbildung auftreten (vgl. [26]). Wichtig ist eine Optimierung der individuellen Reaktionsdauer, die im allgemeinen nur wenige Minuten beträgt. Die angegebene Methode zur

Herstellung von \mathbf{B} ist zum Teil wesentlich einfacher als die in der Literatur beschriebene bzw. ergänzt diese (vgl. Kap. 1. und dort angegebene Literatur).

⁷⁾ Analog wurde gefunden, dass Allyl-2-naphthyläther die thermische Claisen-Umlagerung um den Faktor ca. 10 rascher eingeht als Allylphenyläther [24] [25].

Die δ -Benzoxepinon-Derivate vom Typus **B** lassen sich mit Alkali (vgl. [13] [20] [21]) in 3-alkylierte 1,4-Naphthochinone überführen. Wichtig ist, dass auf diese Weise spezifisch substituierte Naphthochinone frei von Stellungsisomeren erhalten werden.

Wir danken unseren spektroskopischen Abteilungen sowie der Mikroanalytischen Abteilung (Leitung *H. Frohofer*) für Spektren und Analysen.

M. J.-M. dankt dem Stipendienfonds der Basler Chemischen Industrie zur Unterstützung von Doktoranden auf dem Gebiete der Chemie für ein Stipendium. Der Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung hat die vorliegende Arbeit wiederum in dankenswerter Weise unterstützt.

Experimenteller Teil

Allgemeine Bemerkungen. – Vgl. [5]. Analytische Gas-Chromatogramme (GC.) an Silar 211/3- und XF 1105-Kolonnen (Hochtemperatur) nach Grob [27], Verdampferblocktemperatur 200–250°, H₂-Druck 0,2 und 0,3 atü.

1. Synthese der 2-Acylaryl-propargyläther. – 2-Acetyl-4-chlor-phenol wurde nach [28a] hergestellt; Umkristallisation einer Probe aus Hexan ergab farblose Kristalle vom Smp. $52.5-52.7^{\circ}$ (Lit.: Smp. $53.5-54.5^{\circ}$ [28a], $55-57^{\circ}$ [28b]). – IR. (CCl₄): *ca.* 3000 (br., OH gebunden), 1650 (C=O), 1465, 1368 (CH₃), 1320, 1290, 1235, 1205 (C=O). – NMR. (100 MHz, CCl₄): 11.80 (s; OH); 7.61 (d; J(6.4) = 2.5 Hz, H an C(6)); 7.37 ($d \times d$; J(4.3) = 8.5 Hz, J(4.6) = 2.5 Hz, H an C(4)); 6.88 (d; J(3.4) = 8.5 Hz, H an C(3)); 2.61 (s; CH₃CO).

C₈H₇ClO₂ (170,59) Ber. C 56,32 H 4,13 Cl 20,78% Gef. C 56,61 H 4,09 Cl 20,69%

Verätherung. Allgemeine Arbeitsvorschrift: die 2-Acylphenole bzw. 1-Acetyl-2-naphthol wurden wie in [5] beschrieben (vgl. [12]) mit Propargylbromid, (But-2-in-3-yl)-p-toluolsulfonat [29] oder (1-Methyl-propargyl)-p-toluolsulfonat in Aceton in Gegenwart von Kaliumcarbonat unter Rückfluss gekocht. Die Reaktion wurde erst nach möglichst vollständigem Umsatz der Phenolkomponente (GC.- und DC.-Kontrolle) aufgearbeitet, da eine Extraktion mit Claisen-Lauge wegen der Basenempfindlichkeit der Äther nicht in Frage kommt. Übliche Aufarbeitung mit Pentan/Äther und anschliessender Säulenchromatographie, Destillation und Umkristallisation ergab die reinen Äther.

(1-A cetyl-naphth-2-yl)-but-2'-inyläther (1). Aus Hexan farblose Nadeln vom Smp. 47,4–47,6° in 64proz. Ausbeute. – IR. (CCl₄): 2300, 2230 (C=C), 1700 (C=O), 1625, 1593, 1510 (Aromat), 1275, 1220, 1150, 1060 (C–O). – NMR. (100 MHz, CCl₄): 7,85–7,15 (m; 6 aromat. H); 4,73 (q; J(1',4') = 2 Hz, 2H an C(1')); 2,54 (s; CH₃CO); 1,83 (t; J(4',1') = 2 Hz, CH₃ an C(3')). – MS.: 238 (M^+ , 36), 195 (M^+ – CH₃CO, 72), 171 (C₁₁H₇O⁺₂, vgl. 3.1., 100), 91 (48), 53 (C₄H₅+, 95), 43 (CH₃CO). C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,59 H 6,01%

(1-Acetyl-naphth-2-yl)-propargyläther (2): vgl. [12].

(1-A cetyl-naphth-2-yl)-2'-but-3'-inyl-äther (3). Aus Hexan farblose Kristalle vom Smp. 76,3–76,5° in 60proz. Ausbeute. – IR. (CCl₄): 3310 (C≡C–H), 2120 (C≡C), 1700 (C=O), 1595 (Aromat), 1350 (CH₃), 1240, 1130, 1090, 1060 (C–O). – NMR. (60 MHz, CCl₄): 7,80–7,10 (*m*; 6 aromat. H); 4,90 (*q* × *d*; *J* (2',1') = 7 Hz, *J* (2',4') = 2 Hz, H an C(2')); 2,51 (*s*; CH₃CO); 2,35 (*d*; *J* (4',2') = 2 Hz, H an C(4')); 1,61 (*d*; *J* (1',2') = 7 Hz, CH₃ an C(2')). – MS.: 238 (*M*[‡], 28), 223 (*M*[‡] – CH₃, 4), 195 (*M*[‡] – CH₃CO, 24), 186 (27), 171 (C₁₁H₇O₂⁺, 100), 128 (19), 115 (31).

C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,91 H 5,82%

(2-Acetylphenyl)-propargyläther (4). Aus Hexan farblose Kristalle vom Smp. 37,9–38,3° in 66proz. Ausbeute. – IR. (CCl₄): 3330 (C=C–H), 2120 (C=C), 1690 (C=O), 1610 (Aromat), 1490, 1460, 1365, (CH₃), 1300, 1220, 1030 (C–O). – NMR. (60 MHz, CCl₄): 7,85–6,80 (m; 4 aromat. H); 4,77 (d; J(1',3') = 2 Hz, 2H an C(1')); 2,57 (s mit FS; CH₃CO und H an C(3')). – MS.: 174 (M^{\ddagger} , 35), 159 (M^{\ddagger} – CH₃, 56), 145 (15), 132 (M^{\ddagger} – CH₂CO, 100), 131 (M^{\ddagger} – CH₃CO, 83), 121 (43), 103 (30), 91 (29), 77 (40).

C₁₁H₁₀O₂ (174,19) Ber. C 75,48 H 5,75% Gef. C 75,49 H 5,78%

(2-Acetyl-3,5-dimethoxyphenyl)-propargyläther (5). Aus Hexan/Essigester schwach gelbliche Kristalle vom Smp. 75,4–77,6° in 68,5proz. Ausbeute. – IR. (CCl₄): 3310 (C \equiv C–H), 2125 (C \equiv C), 1705 (C=O), 1610 (Aromat), 1200, 1160, 1125 (C–O). – NMR. (60 MHz, CCl₄): 6,15 und 6,03 (je d; J (3,5) = 2 Hz, je H an C(3) und C(5)); 4,60 (d; J (1',3') = 1,5 Hz, 2H an C(1')); 3,77 (s; 2 OCH₃); 2,40 (t; J (3',1') = 1,5 Hz, H an C(3')); 2,32 (s; CH₃CO). – MS.: 234 (M[‡], 34), 219 (M^{\ddagger} –CH₃, 80), 191 (M^{\ddagger} –CH₃CO, 100), 180 (27), 163 (17), 152 (16), 137 (29), 43 (CH₃CO⁺, 66).

C₁₃H₁₄O₄ (234,25) Ber. C 66,65 H 6,02% Gef. C 66,47 H 5,93%

(2-Acetyl-4-chlor-phenyl)-propargyläther (**6**). Aus Äthanol farblose Kristalle vom Smp. 61,6-61,9° in 81proz. Ausbeute. – IR. (CCl₄): 3310 (C≡C–H), 2130 (C≡C), 1690 (C=O), 1595 (Aromat), 1482, 1400, 1360 (CH₃), 1270, 1225, 1150, 1023 (C–O). – NMR. (100 MHz, CCl₄): 7,63 (d; J(3,5) = 2,5 Hz, H an C(3)); 7,33 ($d \times d$; J(5,6) = 8,5 Hz, J(5,3) = 2,5 Hz, H an C(3)); 7,33 ($d \times d$; J(5,6) = 8,5 Hz, J(5,3) = 2,5 Hz, H an C(5)); 6,95 (d; J(6,5) = 8,5 Hz, H an C(6)); 4,76 (d; J(1',3') = 2 Hz, 2H an C(1')); 2,54 (br. s; CH₃CO und H an C(3')). – MS.: 210 (M^{\ddagger} , 15), 208 (M^{\ddagger} , 39), 193 (M^{\ddagger} – CH₃, 28), 179 (20), 166 (M^{\ddagger} – CH₂CO, 100), 165 (M^{\ddagger} – CH₃CO, 78), 156 (47).

 $C_{11}H_9ClO_2(208,64)$ Ber. C 63,32 H 4,34 Cl 16,99% Gef. C 63,48 H 4,38 Cl 17,35%

C12H12O2 (188,22) Ber. C 76,57 H 6,42% Gef. C 76,65 H 6,54%

(2-Dihydrocinnamoylphenyl)-propargyläther (8). Aus Hexan farblose Kristalle vom Smp. 42,9-43,3° in 77proz. Ausbeute. – IR. (CCl₄): 3315 (C=C-H), 2130 (C=C), 1685 (C=O), 1600 (Aromat), 1485, 1450 (CH₂), 1220, 1030 (C-O). – NMR. (60 MHz, CCl₄): 7,61 ($d \times d$; J (3,4) = 8 Hz, J (3,5) = 2 Hz, H an C(3)); 7,60-6,70 (m; 8 aromat. H): 4,60 (d; J (1',3') = 2 Hz, 2H an C(1')); 3,40-2,70 (symmetrisches 8-Linien-m; CH₂-CH₂); 2,37 (t; J (3',1') = 2 Hz, H an C(3')). – MS.: 264 (M^{\ddagger} , 45), 225 (30), 159 (M^{\ddagger} – CH₂CH₂C₆H₅, 100), 147 (15), 131 (M^{\ddagger} – COCH₂CH₂C₆H₅, 41), 121 (C₇H₅O₂⁺, 54), 103 (26), 91 (CH₂C₆H₅⁺, 36), 77 (C₆H₅⁺, 26).

C₁₈H₁₆O₂ (264,32) Ber. C 81,79 H 6,10% Gef. 81,48 H 6,19%

2. Umlagerung der Äther mit Natrium-methylsulfinylmethid. – Allgemeine Arbeitsvorschrift: ca. 50 mg Natriumhydrid (55-60proz.) (ca. 1 mmol) wurden unter Argon mit Pentan gewaschen. Nach Zugabe von 30 ml trockenem Dimethylsulfoxid (DMSO) wurde unter Rühren und ständigem Durchleiten eines schwachen Argonstroms auf $55-60^{\circ}$ erhitzt, bis eine klare, schwach gelb gefärbte Lösung resultierte (vgl. [12] [30]). Nach dem Abkühlen auf RT. wurde 1 mmol des entsprechenden 2-Acylaryl-propargyläthers zugegeben. Die Reaktionsdauer war jeweils im Vorversuch (DC., GC.) optimiert worden und betrug normalerweise 5-15 Min., für den Äther 5 ca. 1, für 1 ca. 1,5-2,5 Std. Anschliessend wurde die dunkelrot bis schwarzgelb gefärbte Lösung auf Eis/Pentan gegossen, wobei sich häufig spektakuläre Farbumschläge nach rot und gelb ereigneten. Nach mehrmaliger Extraktion mit Pentan wurde mit Wasser gewaschen, getrocknet und eingedampft. Die Reinigung der Produkte erfolgte normalerweise durch präp. Schichtchromatographie mit Pentan/Äther (für die Produkte aus 5 mit Äther) an Kieselgel und anschliessende Destillation bzw. Umkristallisation. Bei der Umlagerung von 2 in 11 und von 8 in 36 wurden die Chinone direkt durch mehrmalige Umkristallisation gewonnen; im Falle von 11wurde die Mutterlauge eingedampft und anschliessend noch chromatographiert.

Zur Umwandlung der Phenyläther 4, 5 und 6 wurde wegen der schlechten Ausbeuten der dreifache Ansatz eingesetzt.

2.1. Umlagerung von (1-Acetyl-naphth-2-yl)-but-2'-inyläther (1). Übliche Umsetzung von 1 ergab nach 1,5-2 Std. 48-52% E-9 und ca. 2% 10; daneben wurden aus der Wasserphase nach Ansäuern mit 2N Schwefelsäure ca. 20% 1-Acetyl-2-naphthol isoliert. Bei längerer Reaktionsdauer (ca. 3 Std.) wurde ausschliesslich 10 in ca. 50proz. Ausbeute erhalten. In Kontrollversuchen wurde E-9 analog zu 1 mit NaMSM umgesetzt und ergab 10 in 85proz. Ausbeute. (3(1')-E)-Åthyliden-2, 3-dihydro-naphth[2, 1-b]oxepin-1-on (E-9). Hellgelbes Öl vom Sdp. 130°/ 0,005 Torr, das nach Umkristallisation aus Hexan schwach gelbe Kristalle vom Smp. 68,6–69,8° lieferte; der Anteil an Z-9 betrug aufgrund der gas-chromatographischen Analyse (XF 1105-Kolonne) höchstens 1%. – UV.: λ_{max} : 221 (4,61), 306 (3,77); λ_{min} : 272 (3,29); $\lambda_{schulter}$: 240 (4,21). Zum Vergleich ist das UV.-Spektrum von 2, 3-Dihydro-1*H*-naphtho[2, 1-b]pyran-1-on angegeben [7]: λ_{max} : 221 (4,52), 264 (3,94), 311 (3,89), 344 (3,68); $\lambda_{schulter}$: 236 (4,34) (vgl. auch UV.-Spektrum von 17 (exper. Teil 2.3.). – IR. (CCl₄): 1680 (C=O), 1510 (Aromat), 1340 (CH₂), 1230, 1105, 1015 (C-O), 980. – NMR. (100 MHz, CCl₄): 8,61 ($d \times m$; J(11,10) = 8,5 Hz, H an C(11)); 7,68 (br. d; J(7,6) = 9 Hz, H an C(7)); 7,80–7,30 (m; je H an C(10), C(9) und C(8)); 7,17 (d; J(6,7) = 9 Hz, H an C(6)); 5,58 ($q \times qi$; $J(1', CH_3) = 7$ Hz, J(1',2) = J(1',4) = 1,5 Hz, H an C(1')); 4,70 (qi; J(4,1') = J(4,2') = 1,5 Hz, 2H an C(4)); 3,70 (qi; J(2,1') = J(2,2') = 1,2 Hz, 2H an C(2)); 1,66 ($d \times qi$; J(2',1') = 7 Hz, J(2',2) = J(2',4) = 1,2 Hz, CH₃ an C(1')). NOE-Experiment: bei Einstrahlung bei 4,70 ppm beobachtet man im Signal bei 5,58 ppm eine Intensitätssteigerung von 8%. – MS.: 238 (M^{\ddagger} , 100), 223 (M^{\ddagger} – CH₃, 7), 209 (M^{\ddagger} – CHO, 10), 195 (M^{\ddagger} – CHO–CH₃, 36), 181 (18), 171 (C₁₁H₇O₂+, 80), 115 (24), 114 (29).

C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,86 H 6,03%

(3(1')-Z)-Äthyliden-2, 3-dihydro-naphth[2, 1-b]oxepin-1-on (Z-9). Im Gemisch mit ca. 85% E-9 durch Isomerisierung im Zweiphasensystem Pentan/wässerige Natronlauge mit Benzyl-triäthylammoniumbromid als Phasentransferkatalysator. (Das Verhältnis E-9/Z-9 blieb während 12 Std. konstant (thermodynamisches Gleichgewicht)). Schwach gelbes Öl vom Sdp. 130°/0,005 Torr. – NMR. (100 MHz, CCl₄ und C₆D₆): die wichtigen Signale sind für E-9 und Z-9 getrennt in Tab. 1 aufgeführt.

2-Åthyl-phenanthren-1, 4-dion (10). Gelbe Nadeln vom Smp. 124,8–125,2° aus Äthanol. – UV.: λ_{max} : 222,5 (4,60), 275 (4,25), 357 (3,40); λ_{min} : 242 (3,93), 313 (2,59); $\lambda_{schutter}$: 284 (4,14), 401 (3,20). – IR. (CHCl₃): 1655 (C=O), 1635 (C=C), 1595 (Aromat), 1460 (CH₂, CH₃), 1275, 1250 (=C-O), 908, 880, 850. – NMR. (100 MHz, CDCl₃): 9,58 ($d \times d$; J (5,6) \approx 8 Hz, J (5,7) \approx 2 Hz, H an C(5)); 8,14 (s; je H an C(9) und C(10)); 7,95–7,50 (m; je H an C(6), C(7) und C(8)); 6,74 (t; J (3,1') = 2 Hz, H an C(3)); 2,63 ($q \times d$; J (1', 2') = 7 Hz, J (1', 3) = 2 Hz, 2H an C(1')); 1,25 (t; J (2',1') = 7 Hz, CH₃ an C(1')). – MS.: 236 (M^{\ddagger} , 100), 208 (M^{\ddagger} – CO, 87), 179 (42), 165 (72), 126 (75). C₁₆H₁₂O₂ (236,27) Ber. C 81,33 H 5,11% Gef. C 81,30 H 5,25%

2.2. Umlagerung von (1-Acetyl-naphth-2-yl)-propargyläther (2). 2 ergab nach einer Reaktionsdauer von 5–7 Min. 68–75% 11, 2-4% 12 und ca. 2% eines nicht identifizierten Produktes, das nicht vollständig von 11 abgetrennt werden konnte.

2-Methyl-phenanthren-1, 4-dion (11): vgl. [12].

3-Methyl-2, 3-epoxy-2, 3-dihydro-phenanthren-1, 4-dion (12). Aus Äthanol gelbe Kristalle vom Smp. 107,6-108,1°. – UV.: λ_{max} : 223 (4,35), 268,5 (4,54), 325 (3,59), 350,5 (3,55); λ_{min} : 244 (3,99), 289 (3,18), 342,5 (3,54). – IR. (CCl₄): 1690 (C=O), 1600 (Aromat), 1435 (CH₃), 1330, 1240, 1060 (C-O), 965, 850. – NMR. (100 MHz, CCl₄): 8,95–8,80 (m mit $d \times d$ -Struktur; H an C(10)); 8,20–7,60 (m; 5 aromat. H); 3,98 (s; H an C(2)); 1,78 (s; CH₃ an C(3)). – MS.: 238 (M^{+} , 100), 223 (M^{+} – CH₃, 18), 210 (M^{+} – CO, 26), 196 (18), 181 (19), 155 (34), 139 (52), 126 (48).

C₁₅H₁₀O₃ (238,24) Ber. C 75,62 H 4,23% Gef. C 75,44 H 4,16%

2.3. Umlagerung von (1-Acetyl-naphth-2-yl)-2'-but-3'-inyl-äther (3). Übliche Umsetzung von 3 mit NaMSM ergab in einer Gesamtausbeute von ca. 80% die Produkte 14, 15, 16 und 17; die Anteile der einzelnen Produkte variierten jedoch stark und hingen teilweise von der Reaktionsdauer ab: 130 Min.: 0% 14, 5% 15, 16% 16 und 60% 17; 60 Min.: 0% 14, 6% 15, 52% 16 und 21% 17; 60 Min.: 24% 14, 47% 15, 4% 16 und 7% 17; 7 Min.: 17% 14, 47% 15, 13% 16 und 5% 17.

4-Methyl-3-methyliden-2, 3-dihydro-naphth[2,1-b]oxepin-1-on (14). Aus Hexan farblose Kristalle, die sich beim Trocknen in ein farbloses Öl umwandelten, das beim Anreiben erneut kristallisierte, Smp. 57,0-57,5°. – UV.: λ_{max} : 218 (4,59), 307 (3,81); λ_{min} : 271 (3,23); $\lambda_{schulter}$: 240 (4,23). – IR. (CCl₄): 1685 (C=O), 1595 (Aromat), 1435 (CH₂, CH₃), 1350 (CH₂), 1225 (=C-O). – NMR. (100 MHz, CCl₄): 8,73 (d mit FS; J (11,10) = 9 Hz, H an C(11)); 7,83 (br. d; J (7,6) = 9 Hz, H an C(7)); 7,80-7,20 (m; aromat. H an C(10), C(9) und C(8)); 7,14 (d; J (6,7) = 9 Hz, H an C(6));

5,03 und 4,87 (je br. s; je ein H an C(1')); 4,67 (br. q; J (4, CH₃) = 6 Hz, H an C(4)); 3,76 (br. AB-d; J (gem) = 16 Hz, H an C(2)); 3,42 (AB-d; J (gem) = 16 Hz, H an C(2)); 1,57 (br. d; J (CH₃, 4) = 6 Hz, CH₃ an C(4)). - MS.: 238 (M^{\ddagger} , 80), 223 (M^{\ddagger} -CH₃, 18), 209 (27), 208 (27), 195 (60), 181 (92), 171 (C₁₁H₇O₂⁺, 100), 115 (77), 114 (80).

C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,62 H 5,89%

3,4-Dimethyl-naphth[2,1-b]oxepin-7(4H)-on (15). Gelbliches Öl vom Sdp. 130°/0,005 Torr. – UV.: λ_{max} : 220 (4,75), 249,5 (4,17), 319 (3,71); λ_{min} : 236 (4,07), 286 (3,28); $\lambda_{Schulter}$: 338 (3,62). – IR. (CCl₄): 1660 (C=O), 1635 (C=C), 1430, 1345 (CH₃), 1235, 1132 (C-O). (Zum Vergleich die IR.-Banden (KBr) von 4-Phenyl-1-benzoxepin-5(2H)-on: 1665, 1635 [13]). – NMR. (100 MHz, CCl₄): 8,39 (br. d; J(11,10) = 9 Hz, H an C(11)); 7,76 (br. d; J(7,6) = 8,5 Hz, H an C(7)); 7,70–6,80 (m; je H an C(10), C(9) und C(8)); 7,06 (d; J(6,7) = 8,5 Hz, H an C(6)); 6,12 (q; $J(2, CH_3) = 2$ Hz, H an C(2)); 4,70 (br. q; $J(4, CH_3) = 7$ Hz, H an C(4)); 1,92 (d; $J(CH_3, 2) = 2$ Hz, CH₃ an C(3)); 1,41 (d; $J(CH_3, 4) = 7$ Hz, CH₃ an C(4)). – MS.: 238 (M[‡], 100), 223 (M[‡] - CH₃, 50), 209 (11), 195 (M[‡] - CH₃-CO, 85), 184 (40), 165 (18), 152 (12), 126 (31), 115 (14), 114 (12).

C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,80 H 6,20%

4-Hydroxy-3, 4-dimethyl-phenanthren-7(4H)-on (16). Aus Äthanol farblose Nadeln vom Smp. 175,1-178°. – UV.: λ_{max} : 217,5 (4,56), 250 (4,27), 331,5 (3,89); λ_{min} : 233 (4,11), 284 (3,08); $\lambda_{schulter}$: 325 (3,87). – IR. (CHCl₃): 3580, 3400 (OH), 1668 (C=O), 1638 (C=C), 1618, 1600 (Aromat), 1385 (CH₃), 1260, 1133 (C-O). – NMR. (100 MHz, CDCl₃): 9,56 (br. d; J (10,9) = 9 Hz, H an C(10)); 7,88 und 7,82 (je *AB*-d; J (gem) = 9 Hz, je H an C(6) und C(5)); 7,80–7,40 (m; je H an C(9), C(8) und C(7)); 5,89 (q; J (2, CH₃) = 1,5 Hz, H an C(2)); 3,34 (s; OH); 2,04 (d; J (CH₃, 2) = 1,5 Hz, CH₃ an C(3)); 1,56 (s; CH₃ an C(4)). – MS.: 238 (M^{\ddagger} , 52), 223 (M^{\ddagger} – CH₃, 100), 195 (M^{\ddagger} – CH₃–CO, 63), 165 (37).

C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,85 H 6,11%

3,4-Dimethyl-naphth[2,1-b]oxepin-1(2H)-on (17). Aus Petroläther farblose Nadeln vom Smp. 78,6-79,1°. – UV.: λ_{max} : 263 (4,63), 312 (3,68), 349,5 (3,48); λ_{min} : 238 (4,12), 280 (3,27), 337,5 (3,46). – IR. (CCl₄): 2970 (CH₂, CH₃), 1690 (C=O), 1595 (Aromat), 1430 (CH₂, CH₃), 1278, 1120, 1045 (=C-O), 840. – NMR. (100 MHz, CCl₄): 9,22 ($d \times d$; J (11,10) = 9 Hz, J (11,9) \approx 2 Hz, H an C(11)); 7,99 (s; je H an C(6) und C(7)); 7,90-7,40 (m; aromat. H an C(10), C(9) und C(8)); 2,96 (s; 2H an C(2)); 1,34 (s; je CH₃ an C(3) und C(4)). – MS.: 238 (M^+ , 57), 223 (M^+ – CH₃, 100), 195 (23), 154 (80), 126 (91).

C₁₆H₁₄O₂ (238,28) Ber. C 80,64 H 5,92% Gef. C 80,45 H 5,60%

Kontrollversuche: a) Umsetzung von 14 nach der üblichen Vorschrift ergab nach einer Reaktionsdauer von 10 Min. neben 30% 14 25% 16. Es konnte kein 15 oder 17 nachgewiesen werden.

b) Umsetzung von 15 gab nach 20 Min. neben 25% Ausgangsmaterial 18% 14 und 14% 16; aus einem zweiten Ansatz wurden nach 110 Min. neben 13% Ausgangsmaterial 18% 14 und 23% 16 erhalten; es konnte kein 17 nachgewiesen werden.

c) Bei der Umsetzung von 17 mit NaMSM konnte nach 30 Min. neben Spuren von Ausgangsmaterial nur polymeres Material erhalten werden (DC., GC.).

d) Bei der Umsetzung von (1-Methyl-naphth-2-yl)-propargyläther mit NaMSM unter üblichen Bedingungen wurden nach einer Reaktionsdauer von 125 Min. (GC.) und üblicher Aufarbeitung 27% (1-Methyl-naphth-2-yl)-allenyläther und 20% 1-Methyl-2-naphthol isoliert.

2.4. Umlagerung von 2-Acetylphenyl-propargyläther (4). 4 ergab mit NaMSM in DMSO nach einer Reaktionsdauer von ca. 10 Min. 10–15% 18 und 30–35% eines Gemisches aus 19 und dessen Epoxid 20 im Verhältnis 85:15. 19 konnte durch präp. GC. (XE-60, 180°) unter grossen Verlusten auf 98,5% angereichert werden. Aus einem weiteren Ansatz wurden 34% 22 und 3% 21 erhalten; letzteres konnte durch IR.-Vergleich mit authentischem Material identifiziert werden.

Als Kontrollversuch wurde 21 unter Umlagerungsbedingungen während 3 Std. mit NaMSM umgesetzt; nach üblicher Aufarbeitung konnten 22% des Ausgangschinons 21 sowie 20% des Epoxids 22 isoliert werden.

3-Methyliden-3, 4-dihydro-1-benzoxepin-5-on (18). Nach präp. DC. und Destillation bei 65°/ 0,01 Torr empfindliches, farbloses Öl, Reinheit 81% (GC.). – NMR. (60 MHz, CCl₄): 7,77 (d mit FS; J(6,7) = 9 Hz, H an C(6)); 7,60-6,80 (m; 3 aromat. H); 5,00 und 4,87 (je s mit FS; je 1 H an C(1')); 4,61 (s mit FS; 2 H an C(2)); 3,57 (s mit FS; 2 H an C(4)).

3-Methyl-1-benzoxepin-5(2 H)-on (19). Nach Destillation bei 85°/0,01 Torr farbloser Festkörper vom Smp. 36,0-39,4°; Reinheit 98,5% (GC.). – UV.: λ_{max} : 261,5 (4,06), 313 (3,23); λ_{min} : 228,5 (3,73), 297 (3,18). – IR. (CCl₄): 1665 (C=O), 1640 (C=C), 1605 (Aromat), 1485, 1460 (CH₂, CH₃), 1310, 1220, 1122, 1060 (C-O). – NMR. (100 MHz, CCl₄): 7,86 ($d \times d$; J (6,7) = 8 Hz, J (6,8) = 2 Hz, H an C(6)); 7,34 ($t \times d$; J (8,7) = J (8,9) = 8 Hz, J (8,6) = 2 Hz, H an C(8))⁸; 7,05 ($t \times d$; J (7,6) = J (7,8) = 8 Hz, J (7,9) = 2 Hz, H an C(7)); 6,93 ($d \times d$; J (9,8) = 8 Hz, J (9,7) = 2 Hz, H an C(9)); 6,17 (br. s; H an C(4)); 4,54 (s; 2H an C(2)); 2,00 (br. s; CH₃ an C(3)). – MS.: 174 (M^{\ddagger} , 100), 159 (M^{\ddagger} – CH₃, 5), 145 (45), 131 (60).

3-Methyl-3, 4-epoxy-3, 4-dihydro-1-benzoxepin-5-on (20). Im Gemisch mit 19 (Verhältnis ca. 1:1 (GC.), farbloses Öl vom Sdp. $85^{\circ}/0.01$ Torr. – NMR. (100 MHz, CCl₄) (nur Signale von 20 aufgeführt): 7,68 ($d \times d$; J(6,7) = 8 Hz, J(6,8) = 2 Hz, H an C(6)); 7,50–6,80 (m; 3 aromat. H); 4,26 (s; 2H an C(2)); 3,44 (s; H an C(4)); 1,53 (s; CH₃ an C(3)). – MS.: 190 (M^+).

2-Methyl-2, 3-epoxy-1, 4-naphtochinon (22). Aus Äthanol farblose Kristalle vom Smp. 95–98° (Lit.: Smp. 94–95° [14], 95–97° [15]). – UV.: λ_{max} : 225 (4,42), 264 (3,76), 302 (4,22); λ_{min} : 250,5 (3,69), 291 (3,15). – IR. (CCl₄): 1700 (C=O), 1600 (Aromat), 1338, 1300 (CH₃), 1250, 1190 (C–O), 950, 860. – NMR. (60 MHz, CCl₄): 8,10–7,50 (symmetrisches m; 4 aromat. H); 3,73 (s; H an C(3)); 1,67 (s; CH₃ an C(2)). – MS.: 188 (M^{\ddagger} , 52), 173 (M^{\ddagger} –CH₃, 100), 160 (M^{\ddagger} –CO, 80), 131 (52), 105 (C₆H₅CO⁺, 56), 89 (74), 76 (67).

C11H8O3 (188,18) Ber. C 70,20 H 4,28% Gef. C 69,96 H 4,10%

2.5. Umlagerung von (2-Acetyl-3,5-dimethoxyphenyl)-propargyläther (5). Übliche Umsetzung von 5 mit NaMSM ergab je nach Ansatz die Produkte 23, 24, 25 und 26 in wechselnder Zusammensetzung: a) 100 Min.: 17% 23, Spuren von 24 und 26% Ausgangsmaterial; b) nach 40 Min. Reaktionsdauer: 15% 24, 6% des Epoxids 25 und 31% Ausgangsmaterial; c) mit ca. 1,2 Äquivalenten NaMSM nach 40 Min.: 17% 26 und 16% des Epoxids 25. In allen Fällen traten noch ca. 5% einer nicht identifizierten Verbindung auf, die nicht von 25 abgetrennt werden konnte.

6,8-Dimethoxy-3-methyl-1-benzozepin-5(2H)-on (23). Empfindliches schwach gelbes Öl, das sich unter Destillationsbedingungen (140°/0,005 Torr) zersetzt. – UV.: λ_{max} : 239 (4,07), 308 (3,86); λ_{min} : 268 (3,38). – IR. (CCl₄): 1670 (C=O), 1650 (C=C), 1610, 1580 (Aromat), 1280, 1220, 1205, 1160, 1120, 1060 (C-O). – NMR. (100 MHz, CCl₄): 6,15 und 6,04 (je d; J(7,9) = 2 Hz, je H an C(7) und C(9)); 5,93 (q; $J(4, CH_3) = 2$ Hz, H an C(4)); 4,43 (s; 2H an C(2)); 3,74 (s; 2 OCH₃); 1,84 (br. s, CH₃ an C(3)). – MS.: 234 (M^+ , 100), 219 (M^+ – CH₃, 21), 218 (24), 205 (52), 191 (M^+ – CH₃–CO, 92).

C₁₃H₁₄O₄ (234,25) Ber. C 66,65 H 6,02% Gef. C 66,02 H 6,16%

5,7-Dimethoxy-2-methyl-1, 4-naphthochinon (24). Aus Chloroform/Hexan gelbe Nadeln vom Smp. 144,0-144,7° (Lit.: 146,5° (Äther) [16]). – UV.: λ_{max} : 264,5 (4,28), 401 (3,63); λ_{min} : 227 (3,91), 301,5 (2,57). – IR. (CHCl₃): 1660 (C=O), 1635 (C=C), 1600, 1570 (Aromat), 1362, 1315 (CH₃), 1280, 1160 (C=O). – NMR. (100 MHz, CDCl₃): 7,27 und 6,75 (jc d; J (6,8) = 2 Hz, je H an C(6) und C(8)); 6,72 (q; J (3, CH₃) = 2 Hz, H an C(3)); 4,00 und 3,98 (je s; je OCH₃ an C(5) und C(7)); 2,16 (d; J (CH₃, 3) = 2 Hz, CH₃ an C(2)). Doppelresonanzexperiment: bei der Einstrahlung bei 2,12 ppm bricht das Signal bei 6,72 ppm zu einem gut abgetrennten s zusammen; umgekehrt erscheint bei 2,16 ppm ein s, wenn bei 6,69 ppm eingestrahlt wird. – MS.: 232 (M^+ , 100), 215 (12), 203 (49), 174 (20), 161 (20), 134 (21), 106 (29).

3-Hydroxy-5,7-dimethoxy-2-methyl-1,4-naphthochinon (**26**). Aus Chloroform gelbe Kristalle vom Smp. 207,1-207,8°. – UV.: λ_{max} : 267,5 (4,19), 300,5 (4,16), 372,5 (3,65); λ_{min} : 246,5 (3,97), 280 (4,01), 342,5 (3,52); $\lambda_{schulter}$: 225 (4,18). – IR. (CHCl₃): 3450 (OH), 1650 (C=O), 1600 (Aromat), 1390, 1355 (CH₃), 1160 (C-O). – NMR. (100 MHz, d₆-DMSO): 7,06 und 6,83 (je d; J (6,8) = 2 Hz,

⁸) Die Signale der Aromatenprotonen konnten im Falle der Verbindungen **31** und **32** (vgl. 3.7.) aufgrund der unterschiedlichen Kopplungskonstanten der je zueinander *meta*-ständigen Protonenpaare (J(8,6) = 2 Hz, J(9,7) = 1,5 Hz) zugeordnet werden. In den NMR.-Spektren von zu **31** oder **32** analogen, hier beschriebenen Verbindungen, wo dieser Unterschied nicht auftritt, erfolgt die Zuordnung durch Vergleich der Signalstellen.

je H an C(6) und C(8)); 3,92 (s; 2 OCH₃); ca. 3,5 (sehr br. s; OH); 1,87 (s; CH₃ an C(2)). Bei Zugabe von Deuteriumoxid verschwindet das Signal bei 3,5 ppm. – MS.: 248 (M^+ , 100), 233 (M^+ – CH₃, 7) 230 (12), 220 (M^+ – CO, 25), 219 (27), 202 (24), 191 (15), 177 (31).

C₁₃H₁₂O₅ (248,23) Ber. C 62,90 H 4,87% Gef. C 62,93 H 5,07%

5,7-Dimethoxy-2-methyl-2,3-epoxy-1,4-naphthochinon (25). Verunreinigt mit ca. 30% einer nicht identifizierten Verbindung. – NMR. (60 MHz, CDCl₃) (nur Signale von 25 aufgeführt): 6,90 und 6,60 (je d; J (6,8) = 2 Hz, je H an C(6) und C(8)); 3,90 (s; 2 OCH₃); 3,62 (s; H an C(3)); 1,63 (s; CH₃ an C(2)). – MS.: 248 (M^+ , 100).

2.6. Umlagerung von (2-Acetyl-4-chlorphenyl)-propargyläther (6). Übliche Umsetzung von 6 mit NaMSM gab nach Reaktionsdauern von 12-20 Min. die Produkte 27 und 28, bzw. die Folgeprodukte 29 und 30. Die Gesamtausbeute betrug maximal 20%.

7-Chlor-3-methyl-1-benzoxepin-5(2H)-on (27). Schwach gelbliches Öl vom Sdp. $110^{\circ}/0.005$ Torr, verunreinigt mit ca. 10% 28, das sich nicht vollständig abtrennen liess. – NMR. (100 MHz, CDCl₃): 7,92 (d; J(6,8) = 3 Hz, H an C(6)); 7,38 ($d \times d$; J(8,9) = 9 Hz, J(8,6) = 3 Hz, H an C(8)); 7,00 (d; J(9,8) = 9 Hz, H an C(9)); 6,30 (br. s; H an C(4)); 4,62 (s; 2H an C(2)); 2,06 (br. s; CH₃ an C(3)).

7-Chlor-3-methyl-3, 4-epoxy-3, 4-dihydro-1-benzoxepin-5-on (**28**). Aus Äthanol farblose Kristalle vom Smp. 136,6–137,3°. UV.: λ_{max} : 251 (3,83), 325 (3,42); λ_{min} : 240 (3,74), 280 (2,50). – IR. (CHCl₃): 1670 (C=O), 1605 (Aromat), 1475, 1280 (C-O). – NMR. (100 MHz, CDCl₃): 7,75 (d; J(6,8) = 3 Hz, H an C(6)); 7,38 ($d \times d$; J(8,9) = 9 Hz, J(6,8) = 3 Hz, H an C(8)); 6,94 (d; J(8,9) = 9 Hz, H an C(9)); 4,35 (s; 2H an C(2)); 3,65 (s; H an C(3)); 1,56 (s; CH₃ an C(3)). – MS.: 226 (M^{\ddagger} , 24), 224 (M^{\ddagger} , 71), 195 (8), 181 (14), 167 (45), 154 (100), 126 (48).

6-Chlor-2-methyl-1, 4-naphthochinon (29). Im Gemisch mit ca. 30% 30. – NMR. (100 MHz, CDCl₃) (nur Signale von 29 aufgeführt): 8,15–7,60 (m; 3 aromat. H); 6,86 (q; $J(3, CH_3) = 2$ Hz, H an C(3)); 2,21 (d; $J(CH_3, 3) = 2$ Hz, CH₃ an C(2)).

7-Chlor-3-methyl-2, 3-epoxy-2, 3-dihydro-1, 4-naphtochinon (**30**). Aus Äthanol farblose Kristalle vom Smp. 113,0-113,5°. – UV.: λ_{max} : 232 (4,44), 267 (3,86), 304 (3,23); λ_{min} : 255 (3,80), 296 (3,20). – IR. (CCl₄): 1695 (C=O), 1595 (Aromat), 1323, 1300, 1270 (C-O), 950, 860. – NMR. (100 MHz, CDCl₃): 7,92 (d; J(7,8) = 8 Hz, H an C(8)); 7,85 (d; J(5,7) = 2 Hz, H an C(5)); 7,64 ($d \times d$; J(7,8) = 8 Hz, J(5,7) = 2 Hz, H an C(7)); 3,82 (s; H an C(3)); 1,69 (s; CH₃ an C(2)). – MS.: 224 (M^{\ddagger} , 27), 222 (M^{\ddagger} , 76), 209 (M^{\ddagger} – CH₃, 29), 207 (M^{\ddagger} – CH₃, 88), 194 (18), 139 (24), 131 (41), 123 (49), 110 (31), 75 (55), 43 (100).

C11H7ClO3 (222,62) Ber. C 59,34 H 3,16 Cl 15,92% Gef. C 59,06 H 2,88 Cl 15,63%
2.7. Umlagerung von (2-Propionylphenyl)-propargyläther (7). Nach einer Reaktionsdauer von
5-7 Min. erhielt mau 3% 4-Methyl-3-methyliden-3,4-dihydro-1-benzoxepin-5-on (31), 67-72%
3,4-Dimethyl-1-benzoxepin-5(2H)-on (32) und 2-4% 2,3-Dimethyl-1,4-naphthochinon (33); die beiden letztgenannten Verbindungen liessen sich nur schlecht voneinander trennen.

4-Methyl-3-methyliden-3, 4-dihydro-1-benzoxepin-5-on (31). Schwach gelbliches Öl von Sdp. 80°/0,008 Torr. – UV.: λ_{max} : 245,5 (3,92), 296,5 (3,38); λ_{min} : 228 (3,65), 274,5 (2,96). – IR. (CCl₄): 1695 (C=O), 1605 (Aromat), 1480, 1460 (CH₂, CH₃), 1285, 1210, 1025 (C-O), 965, 905. – NMR. (100 MHz, CCl₄): 7,79 (d×d; J (6,7) = 8 Hz, J (6,8) = 2 Hz, H an C(6)); 7,35 (t×d; J (8,7) = J (8,9) = 8 Hz, J (8,6) = 2 Hz, H an C(8)); 7,05 (t×d; J (7,6) = J (7,8) = 8 Hz, J (7,9) = 1,5 Hz, H an C(7)); 6,98 (d×d; J (9,8) = 8 Hz, J (9,7) = 1,5 Hz, H an C(9)); 4,96 (s mit FS; 2H an C(1')); 4,81 und 4,55 (je AB-d mit FS; J (gem) = 13 Hz, je ein H an C(2)); 3,79 (q mit FS; J (4, CH₃) = 7 Hz, H an C(4)); 1,36 (d; J (CH₃, 4) = 7 Hz, CH₃ an C(4)). – MS.: 188 (M⁺, 75), (M⁺ - CH₃, 32), 159 (11), 145 (34), 131 (12), 121 (C₇H₅O₂+, 84), 92 (32), 43 (100).

C₁₂H₁₂O₂ (188,22) Ber. C 76,57 H 6,42% Gef. C 76,66 H 6,64%

3,4-Dimethyl-1-benzozepin-5(2H)-on (32). Gelbliches Öl von Sdp. 90°/0,005 Torr, verunreinigt mit 2% 2,3-Dimethyl-1,4-naphthochinon (33) (Identifizierung durch GC. mit authentischem Material), das nicht abgetrennt werden konnte. – UV.: λ_{max} : 270,5 (3,97), 325 (3,41); λ_{min} : 229,5 (3,56), 302 (3,24). – IR. (CCl₄): 1650 (C=O), 1605 (Aromat), 1480, 1450 (CH₃), 1315. – NMR. (100 MHz, CCl₄): 7,85 (d×d; J (6,7) = 9 Hz, J (6,8) = 2 Hz, H an C(6)); 7,25 (t×d; J (8,7) \approx J (8,9) = 8 Hz, J (8,6) = 2 Hz, H an C(8)); 6,94 (t×d; J (7,8) \approx J (7,6) \approx 8,5 Hz, J (7,9) = 1,5 Hz,

H an C(7)); 6,84 ($d \times d$; J(9,8) = 8 Hz, J(9,7) = 1,5 Hz, H an C(9)); 4,53 (s; 2 H an C(2)); 2,00 (s; CH₃ an C(3)); 1,87 (s; CH₃ an C(4)); die Zuordnung der Methylsignale erfolgte aufgrund der grösseren Verschiebung des 1,87 ppm-Signals relativ zu derjenigen des Signals bei 2,00 ppm bei Zugabe von Eu(fod)₈-Reagens. – MS.: 188 (M^{\ddagger} , 100), 173 (M^{\ddagger} -CH₃, 27), 159 (25), 145 (58), 94 (40). C₁₂H₁₂O₂ (188,22) Ber. C 76,57 H 6,42% Gef. C 76,30 H 6,38%

2.8. Umlagerung von (2-Dihydrocynnamoyl-phenyl)-propargyläther (8). Nach einer Reaktionsdauer von 5-10 Min. erhielt man ca. 8% 34 und 80% 35; bei längerer Reaktionsdauer (ca. 15 Min.) konnte auschliesslich das Chinon 36 in einer Ausbeute von 85% isoliert werden.

4-Benzyl-3-methyliden-3, 4-dihydro-1-benzoxepin-5-on (34). Farblose Öl vom Sdp. 130°/0,005 Torr; Reinheit ca. 85% (GC.). – NMR. (100 MHz, CCl₄): 7,77 ($d \times d$; J(6,7) = 7 Hz, J(6,8) =2 Hz, H an C(6)); 7,37 ($t \times d$; J(8,7) = J(8,9) = 8 Hz, J(8,6) = 2 Hz, H an C(8))⁹); 7,20-6,85 (m; H an C(7) und C(9) und 5 andere aromat. H); 4,96 (m mit FS; 2H an C(1')); 4,72 und 4,52 (je br. AB-d; J(gem) = 15 Hz, 2H an C(2)); 4,00 (br. t; $J(4, CH_2) = 7$ Hz, H an C(4)); 3,39 (AB- $d \times d$; J(gem) = 14 Hz, $J(CH_2, 4) = 7$ Hz, 1H von CH₂ an C(4)); 2,99 (AB- $d \times d$; J(gem) =14 Hz, $J(CH_2, 4) = 8$ Hz, 1H von CH₂ an C(4)).

4-Benzyl-3-methyl-1-benzozepin-5(2H)-on (**35**). Schwach gelbliches Öl vom Sdp. 140°/0,005 Torr. – UV.: λ_{max} : 264,5 (3,99), 326 (3,42); λ_{min} : 234 (3,61), 302 (3,23). – IR. (CCl₄): 1650 (C=O), 1605, 1500 (Aromat), 1480, 1450 (CH₂, CH₃), 1312. – NMR. (100 MHz, CCl₄): 7,88 ($d \times d$; J (6,7) = 8 Hz, J (6,8) = 2 Hz, H an C(6)); 7,34 ($t \times d$; J (8,7) = J (8,9) = 8 Hz, J (8,6) = 2 Hz, H an C(8)); 7,25–7,00 (m; H an C(7) und 5 andere aromat. H); 6,92 (br. d; J (9,8) = 8 Hz, H an C(9)); 4,58 (s; 2H an C(2)); 3,76 (s; CH₂ an C(4)); 2,04 (s; CH₃ an C(3)). – MS.: 264 (M^{\ddagger} , 100), 249 (M^{\ddagger} – CH₃, 27), 221 (26), 187 (M^{\ddagger} – C₆H₅, 37), 173 (M^{\ddagger} – C₆H₅CH₂, 22), 128 (36), 121 (C₇H₅O₂⁺, 92), 91 (C₆H₅CH₂⁺, 61).

C₁₈H₁₆O₂ (264,32) Ber. C 81,79 H 6,10% Gef. C 81,87 H 5,90%

2-Benzyl-3-methyl-1, 4-naphthochinon (**36**). Aus Äthanol gelbe Kristalle vom Smp. 106,0–107,3° (Lit.: 106–108 [17]). – UV.: λ_{max} : 246,5 (4,26), 267,5 (4,19), 327 (3,46); λ_{min} : 228 (3,95), 255 (4,13), 293 (3,19); $\lambda_{schulter}$: 260 (4,18). – IR. (CHCl₃): 1665 (C=O), 1622 (C=C), 1600, 1498 (Aromat), 1335, 1295 (C=O), 975. – NMR. (100 MHz, CCl₄): 8,10 und 7,68 (je schmales *m* (*AA'BB'*-System); 4 aromat. H); 7,23 (s mit FS; 5 aromat. H); 4,04 (s; CH₂ an C(2)); 2,26 (s; CH₃ an C(3)). – MS.: 262 (*M*⁺, 27), 247 (*M*⁺ – CH₃, 100), 118 (8), 115 (9), 91 (C₆H₅CH₂⁺, 9), 76 (C₆H₅⁺, 16).

 $C_{18}H_{14}O_2\;(262,30) \qquad {\rm Ber.}\;\; C\;82,42 \quad {\rm H}\;5,37\,\% \qquad {\rm Gef.}\;\; C\;82,35 \quad {\rm H}\;5,58\,\%$

LITERATURVERZEICHNIS

- S. G. Powell & L. Anderson, J. Amer. chem. Soc. 53, 811 (1931); O. Dann & W.-D. Arndt, Liebigs Ann. Chem. 587, 38 (1954); G. Fontaine, Ann. Chim. (Paris) 1968, 179.
- J. H. P. Tyman & R. Pickles, Tetrahedron Letters 1966, 4993; C. Paulmier, J. Morel, D. Semard & P. Pastour, Bull. Soc. chim. France 1973, 2434.
- [3] H. Hofmann, Angew. Chem. 77, 864 (1965); H. Hofmann & H. Westernacher, Chem. Ber. 102, 205 (1969).
- [4] D. N. Reinhoudt & C. G. Kouvenhoven, Tetrahedron Letters 1972, 5203.
- [5] M. Mülly, J. Zsindely & H. Schmid, Helv. 58, 610 (1975).
- [6] W. D. Cotterill, R. Livingstone & M. V. Walshaw, J. chem. Soc. (C) 1970, 1758.
- [7] I. Iwai & J. Ide, Chem. pharm. Bull. (Tokyo) 10, 926 (1962).
- [8] O. Červinka, O. Bělovský & P. Adámek, Coll. Czechoslov. chem. Commun. 30, 3462 (1965).
- [9] G. A. Reynolds & J. A. VanAllan, J. heterocycl. Chemistry 6, 375 (1969).
- [10] J. Heiss, K. P. Zeller & A. Rieker, Org. Mass Spectrom. 2, 1325 (1969).
- [11] P. Hill & W. F. Short, J. chem. Soc. 1937, 260.
- [12] M. Mülly, J. Zsindely & H. Schmid, Chimia 28, 62 (1974).
- [13] H. Hofmann & H.-J. Haberstroh, Liebigs Ann. Chem. 1973, 2032; H. Hofmann & P. Hofmann, Chem. Ber. 106, 3571 (1973).
- [14] E. Zavarin, J. org. Chemistry 23, 47 (1958).

⁹) Vgl. Fussnote 8).

- [15] V. M. Clark, D. W. Hutchinson, G. W. Kirby & A. Todd, J. chem. Soc. 1961, 715.
- [16] H. Schmid & M. Burger, Helv. 35, 928 (1952).
- [17] L. F. Fieser & R. H. Brown, J. Amer. chem. Soc. 71, 3609 (1949).
- [18] E. Winterfeldt in H. G. Viehes 'Chemistry of Acetylenes', M. Dekker, New York 1969, p. 267.
- [19] I. Iwai in B. S. Thyagarajans 'Mechanism of Molecular Migrations', Interscience Publishers, New York 1969, Vol. 2, p. 73.
- [20] C. Rivalle, E. Bisagni & J. André-Louisfert, Tetrahedron 30, 3193 (1974).
- [21] J. S. Davies, V. H. Davies & C. H. Hassall, J. chem. Soc. (C) 1969, 1873.
- [22] N. D. Epiotis, S. Sarkanen, D. Bjorkquist, L. Bjorkquist & R. Yates, J. Amer. chem. Soc. 96, 4075 (1974).
- [23] P. Salomaa & P. Nissi, Acta chem. Scand. 21, 1386 (1967).
- [24] H. L. Goering & R. R. Jacobson, J. Amer. chem. Soc. 80, 3277 (1958).
- [25] S. Marcinkiewicz, J. Green & P. Mamalis, Tetrahedron 14, 208 (1961).
- [26] E. J. Corey & M. Chaykovsky, J. Amer. chem. Soc. 84, 866 (1962).
- [27] K. Grob, Helv. 48, 1362 (1965); 51, 718 (1968).
- [28] a) G. Wittig, Ber. dtsch. chem. Ges. 57, 88 (1924); b) M. Nencki & E. Stoeber, Ber. dtsch. chem. Ges. 30, 1768 (1897).
- [29] A. Marszák-Fleury, Ann. Chim. (Paris) 3, 656 (1958).
- [30] R. Greenwald, M. Chaykovsky & E. J. Corey, J. org. Chemistry 28, 1128 (1963).

71. Ringschlüsse an Chinonylmethanfarbstoffen und analogen Merocyaninen

4. Mitteilung [1]

Dihydro-anthracenophenazinone

von Dieter Schelz und Martin Priester

Institut für Farbenchemie der Universität Basel

(6. X. 75)

Dihydro-anthracenophenazinones (Cyclization of Quinonylmethane Dyes, 4^{th} Communication. – Summary. Substituted dihydroanthraceno[1,2-b]phenazinones were synthetized by reaction of 1-alkyl-2,3-dimethyl-quinoxalinium-perchlorates with dichloro- or tetrachloro-1,4-anthraquinone and cyclization of the intermediate quinoxalylidenmethyl-1,4-anthraquinones. The tetrachloro derivative of 1,4-anthraquinone obtained by chlorination in boiling acetic acid in the presence of iodine is identified to be the 2,3,6,9-isomer. The properties of the dihydroanthraceno[1,2-b]phenazinones are discussed. The visible, mass, and some ¹H-NMR. spectra are given.

Substituierte 6,9-Dihydroanthraceno[1,2-b]phenazin-6-one **3** lassen sich in Analogie zu den früher beschriebenen Naphthophenazinon-Derivaten [2] [3] aus den substituierten 1,4-Anthrachinonen **1a** and **1b** durch Ringschluss der Zwischenstufen **2** gewinnen (*Schema*). Nachdem bereits in anderem Zusammenhang über ein Beispiel **3** berichtet wurde [1], sollen hier fünf weitere Anthracenophenazinone zur Charakterisierung dieser Substanzklasse diskutiert werden (Tabelle 1).

Der Strukturbeweis für das erstmals beschriebene **1b** stützt sich auf den Vergleich der ¹H-NMR.-Spektren von **1a**, **1b**, **2e** und **3d** mit denen entsprechend substituierter Derivate des Naphthalins (Tabelle 2). Das ¹H-NMR.-Spektrum von **1a** zeigt ein Singulett für die magnetisch äquivalenten Protonen an C(5) und C(10) und ein Multiplett für die vier restlichen aromatischen Protonen, das Spektrum von **1b**